5 research outputs found

    Additional file 1: Figure S1. of IMMUNEPOTENT CRP induces cell cycle arrest and caspase-independent regulated cell death in HeLa cells through reactive oxygen species production

    No full text
    (A) ROS levels were measured by flow cytometry through DCFDA staining in SiHa cells left alone or pretreated with NAC or QVD.oph and then treated with I-CRP (1.25 U/mL) for 24 h. (B) The effect on cell death of cells left alone or pretreated with NAC or QVD.oph and then treated with I-CRP (1.25 U/mL) for 24 h, was analyzed by flow cytometry through Annexin-V staining. The results were analyzed and graphed. (PDF 20 kb

    Additional file 2: Figure S2. of IMMUNEPOTENT CRP induces cell cycle arrest and caspase-independent regulated cell death in HeLa cells through reactive oxygen species production

    No full text
    Left, caspase-3 activity of HeLa cells left untreated or pretreated with Nac, and then treated with I-CRP. Right, the results obtained were analyzed and graphed as the percentage of HeLa cells positive for caspase-3 activity. (PDF 37 kb

    Image_1_Antibacterial efficacy of novel bismuth-silver nanoparticles synthesis on Staphylococcus aureus and Escherichia coli infection models.tiff

    No full text
    IntroductionThe emergence of multi-drug-resistant bacteria is one of the main concerns in the health sector worldwide. The conventional strategies for treatment and prophylaxis against microbial infections include the use of antibiotics. However, these drugs are failing due to the increasing antimicrobial resistance. The unavailability of effective antibiotics highlights the need to discover effective alternatives to combat bacterial infections. One option is the use of metallic nanoparticles, which are toxic to some microorganisms due to their nanometric size.MethodsIn this study we (1) synthesize and characterize bismuth and silver nanoparticles, (2) evaluate the antibacterial activity of NPs against Staphylococcus aureus and Escherichia coli in several infection models (in vivo models: infected wound and sepsis and in vitro model: mastitis), and we (3) determine the cytotoxic effect on several cell lines representative of the skin tissue.Results and discussionWe obtained bimetallic nanoparticles of bismuth and silver in a stable aqueous solution from a single reaction by chemical synthesis. These nanoparticles show antibacterial activity on S. aureus and E. coli in vitro without cytotoxic effects on fibroblast, endothelial vascular, and mammary epithelium cell lines. In an infected-wound mice model, antibacterial effect was observed, without effect on in vitro mastitis and sepsis models.</p
    corecore