56 research outputs found

    The Ribosomal Protein RpL22 Interacts In Vitro with 5′-UTR Sequences Found in Some Drosophila melanogaster Transposons

    Get PDF
    Mobility of eukaryotic transposable elements (TEs) are finely regulated to avoid an excessive mutational load caused by their movement. The transposition of retrotransposons is usually regulated through the interaction of host- and TE-encoded proteins, with non-coding regions (LTR and 5′-UTR) of the transposon. Examples of new potent cis-acting sequences, identified and characterized in the non-coding regions of retrotransposons, include the insulator of gypsy and Idefix, and the enhancer of ZAM of Drosophila melanogaster. Recently we have shown that in the 5′-UTR of the LTR-retrotransposon ZAM there is a sequence structured in tandem-repeat capable of operating as an insulator both in Drosophila (S2R+) and human cells (HEK293). Here, we test the hypothesis that tandem repeated 5′-UTR of a different LTR-retrotransposon could accommodate similar regulatory elements. The comparison of the 5′-UTR of some LTR-transposons allowed us to identify a shared motif of 13bp, called Transposable Element Redundant Motif (TERM). Surprisingly, we demonstrated, by Yeast One-Hybrid assay, that TERM interacts with the D. melanogaster ribosomal protein RpL22. The Drosophila RpL22 has additional Ala-, Lys- and Prorich sequences at the amino terminus, which resembles the carboxy-terminal portion of histone H1 and histone H5. For this reason, it has been hypothesized that RpL22 might have two functions, namely the role in organizing the ribosome, and a potential regulatory role involving DNA-binding similar to histone H1, which represses transcription in Drosophila. In this paper, we show, by two independent sets of experiments, that DmRpL22 is able to directly and specifically bind DNA of Drosophila melanogaster

    Factors Affecting the Quality of Bacterial Genomes Assemblies by Canu after Nanopore Sequencing

    Get PDF
    Long-read sequencing (LRS), like Oxford Nanopore Technologies, is usually associated with higher error rates compared to previous generations. Factors affecting the assembly quality are the integrity of DNA, the flowcell efficiency, and, not least all, the raw data processing. Among LRS-intended de novo assemblers, Canu is highly flexible, with its dozens of adjustable parameters. Different Canu parameters were compared for assembling reads of Salmonellaenterica ser. Bovismorbificans (genome size of 4.8 Mbp) from three runs on MinION (N50 651, 805, and 5573). Two of them, with low quality and highly fragmented DNA, were not usable alone for assembly, while they were successfully assembled when combining the reads from all experiments. The best results were obtained by modifying Canu parameters related to the error correction, such as corErrorRate (exclusion of overlaps above a set error rate, set up at 0.40), corMhapSensitivity (the coarse sensitivity level, set to “high”), corMinCoverage (set to 0 to correct all reads, regardless the overlaps length), and corOutCoverage (corrects the longest reads up to the imposed coverage, set to 100). This setting produced two contigs corresponding to the complete sequences of the chromosome and a plasmid. The overall results highlight the importance of a tailored bioinformatic analysis

    Genome characterization and CRISPR-Cas9 editing of a human neocentromere

    Get PDF
    The maintenance of genome integrity is ensured by proper chromosome inheritance during mitotic and meiotic cell divisions. The chromosomal counterpart responsible for chromosome segregation to daughter cells is the centromere, at which the spindle apparatus attaches through the kinetochore. Although all mammalian centromeres are primarily composed of megabase-long repetitive sequences, satellite-free human neocentromeres have been described. Neocentromeres and evolutionary new centromeres have revolutionized traditional knowledge about centromeres. Over the past 20 years, insights have been gained into their organization, but in spite of these advancements, the mechanisms underlying their formation and evolution are still unclear. Today, through modern and increasingly accessible genome editing and long-read sequencing techniques, research in this area is undergoing a sudden acceleration. In this article, we describe the primary sequence of a previously described human chromosome 3 neocentromere and observe its possible evolution and repair results after a chromosome breakage induced through CRISPR-Cas9 technologies. Our data represent an exciting advancement in the field of centromere/neocentromere evolution and chromosome stability

    MYEOV gene overexpression in primary plasma cell leukemia with t(11;14)(q13;q32)

    Get PDF
    Primary plasma cell leukemia (pPCL) is an uncommon form of plasma cell dyscrasia, and the most aggressive of the human monoclonal gammopathies. The t(11;14)(q13;q32) rearrangement is the most common alteration in pPCL, promoting cyclin D1 (CCND1) gene overexpression caused by its juxtaposition with the immunoglobulin heavy locus chromosome region. The myeloma overexpressed (MYEOV) gene maps very close to the CCND1 gene on chromosome 11, but its overexpression is rarely observed in multiple myeloma. The present study describes a case of pPCL with t(11;14) characterized by a breakpoint on der(11), unlike the one usually observed. Droplet digital polymerase chain reaction analysis revealed overexpression of CCND1 and MYEOV. To the best of our knowledge, MYEOV gene overexpression has never been previously described in pPCL

    Altered Gene Expression Encoding Cytochines, Grow Factors and Cell Cycle Regulators in the Endometrium of Women with Chronic Endometritis

    Get PDF
    To evaluate the expression of genes encoding cytokines, grow factors and cell cycle regulators in the proliferative endometrium of women with chronic endometritis (CE) compared to controls. We performed a case-control study on seven women with CE as diagnosed by hysteroscopy and histology (Cases) compared to six women without CE (Controls). All women underwent diagnostic hysteroscopy plus endometrial biopsy during the mid-proliferative phase of the menstrual cycle. Endometrial samples were divided into two different aliquots for histological and molecular analyses. The endometrial expression profile of 16 genes encoding proteins involved in the inflammatory process, proliferation and cell cycle regulation/apoptosis was assessed by using high-throughput qPCR. Study endpoints were between-group differences in the expression of VEGF A, VEGF B, VEGF C, EGF, TNF, TGF B1, IFNG, TP73, TP73L, BAXva, CDC2, CDC2va, CCND3, CCNB1, BAX and IL12. RESULTS: VEGF A, VEGF B, VEGF C, EGF, TNF, TGF B1, IFNG, TP73, TP73L, BAXva, CDC2, CDC2va, CCND3, CCNB1 were significantly overexpressed in women with CE compared to controls, while BAX and IL12 had similar expression between groups. In women with CE, we found an altered endometrial expression of genes involved in inflammatory, cell proliferation, and apoptosis processes. The dominance of proliferative and anti-apoptotic activity in CE may potentially promote the development of polyps and hyperplastic lesions

    Case report: biallelic DNMT3A mutations in acute myeloid leukemia

    Get PDF
    DNMT3A gene mutations, detected in 20-25% of de novo acute myeloid leukemia (AML) patients, are typically heterozygous. Biallelic variants are uncommon, affecting ~3% of cases and identifying a worse prognosis. Indeed, two concomitant DNMT3A mutations were recently associated with shorter event-free survival and overall survival in AML. We present an AML case bearing an unusual DNMT3A molecular status, strongly affecting its function and strangely impacting the global genomic methylation profile. A 56-year-old Caucasian male with a diagnosis of AML not otherwise specified (NOS) presented a complex DNMT3A molecular profile consisting of four different somatic variants mapping on different alleles (in trans). 3D modelling analysis predicted the effect of the DNMT3A mutational status, showing that all the investigated mutations decreased or abolished DNMT3A activity. Although unexpected, DNMT3A’s severe loss of function resulted in a global genomic hypermethylation in genes generally involved in cell differentiation. The mechanisms through which DNMT3A contributes to AML remain elusive. We present a unique AML case bearing multiple biallelic DNMT3A variants abolishing its activity and resulting in an unexpected global hypermethylation. The unusual DNMT3A behavior described requires a reflection on its role in AML development and persistence, highlighting the heterogeneity of its deregulation

    MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene

    Get PDF
    Double minutes (dmin)—circular, extra-chromosomal amplifications of specific acentric DNA fragments—are relatively frequent in malignant disorders, particularly in solid tumors. In acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), dmin are observed in ∼1% of the cases. Most of them consist of an amplified segment from chromosome band 8q24, always including the MYC gene. Besides this information, little is known about their internal structure. We have characterized in detail the genomic organization of 32 AML and two MDS cases with MYC-containing dmin. The minimally amplified region was shown to be 4.26 Mb in size, harboring five known genes, with the proximal and the distal amplicon breakpoints clustering in two regions of ∼500 and 600 kb, respectively. Interestingly, in 23 (68%) of the studied cases, the amplified region was deleted in one of the chromosome 8 homologs at 8q24, suggesting excision of a DNA segment from the original chromosomal location according to the ‘episome model'. In one case, sequencing of both the dmin and del(8q) junctions was achieved and provided definitive evidence in favor of the episome model for the formation of dmin. Expression status of the TRIB1 and MYC genes, encompassed by the minimally amplified region, was assessed by northern blot analysis. The TRIB1 gene was found over-expressed in only a subset of the AML/MDS cases, whereas MYC, contrary to expectations, was always silent. The present study, therefore, strongly suggests that MYC is not the target gene of the 8q24 amplification

    Epitranscriptomics in Normal and Malignant Hematopoiesis

    No full text
    Epitranscriptomics analyze the biochemical modifications borne by RNA and their downstream influence. From this point of view, epitranscriptomics represent a new layer for the control of genetic information and can affect a variety of molecular processes including the cell cycle and the differentiation. In physiological conditions, hematopoiesis is a tightly regulated process that produces differentiated blood cells starting from hematopoietic stem cells. Alteration of this process can occur at different levels in the pathway that leads from the genetic information to the phenotypic manifestation producing malignant hematopoiesis. This review focuses on the role of epitranscriptomic events that are known to be implicated in normal and malignant hematopoiesis, opening a new pathophysiological and therapeutic scenario. Moreover, an evolutionary vision of this mechanism will be provided
    corecore