15 research outputs found

    Laboratory Evolution of Escherichia coli K-12 under Aromatic Acid Stress: Adaptation in a Stressful World

    No full text
    The intestinal bacterium Escherichia coli K-12 can survive and protect its cell contents from a wide range of acidic and basic conditions ranging from low pH in the stomach to higher pH levels in the small intestine. We initiated an adaptive laboratory evolution procedure that consisted of daily dilutions in increasing concentrations of benzoic acid for 2,000 generations. Fitness increased step-wise over subsequent generations up to the final 2,000th generation. Sixteen unique clones from 12 of the 24-permeant aromatic acid-adapted populations grew significantly better in a lethal concentration of benzoate and salicylate compared to the ancestral strain. The genomes of the 16 isolates were whole genome sequenced and analyzed to find over 100 mutations including SNPs, large deletions, and transposable mobile elements. Some isolates acquired large deletions in the benzoate- induced multiple antibiotic resistance (mar) regulon and thus showed increased sensitivity to the antibiotic chloramphenicol. All isolates grew similarly to the ancestral wild type strain in various external pH conditions and in the presence of permeant aliphatic acids. However, the isolates showed profiles of adaption in salicylate that resembled the effects of benzoate, thus suggesting that the isolates had increased fitness specifically to permeant aromatic acids such as benzoate and salicylate. We predict that evolution in benzoic acid appears to downregulate regulons induced by aromatic acids and this project likely uncovered novel genes and their products that contribute to fitness, resistance, and growth in the presence of benzoate, the aspirin salicylate, and the antibiotic chloramphenicol

    Phylogenetic analysis of the salinipostin γ-butyrolactone gene cluster uncovers new potential for bacterial signalling-molecule diversity

    No full text
    Bacteria communicate by small-molecule chemicals that facilitate intra- and inter-species interactions. These extracellular signalling molecules mediate diverse processes including virulence, bioluminescence, biofilm formation, motility and specialized metabolism. The signalling molecules produced by members of the phylum Actinobacteria generally comprise γ-butyrolactones, γ-butenolides and furans. The best-known actinomycete γ-butyrolactone is A-factor, which triggers specialized metabolism and morphological differentiation in the genus Streptomyces . Salinipostins A–K are unique γ-butyrolactone molecules with rare phosphotriester moieties that were recently characterized from the marine actinomycete genus Salinispora . The production of these compounds has been linked to the nine-gene biosynthetic gene cluster (BGC) spt. Critical to salinipostin assembly is the γ-butyrolactone synthase encoded by spt9. Here, we report the surprising distribution of spt9 homologues across 12 bacterial phyla, the majority of which are not known to produce γ-butyrolactones. Further analyses uncovered a large group of spt-like gene clusters outside of the genus Salinispora , suggesting the production of new salinipostin-like diversity. These gene clusters show evidence of horizontal transfer and location-specific recombination among Salinispora strains. The results suggest that γ-butyrolactone production may be more widespread than previously recognized. The identification of new γ-butyrolactone BGCs is the first step towards understanding the regulatory roles of the encoded small molecules in Actinobacteria

    Extending the Salinilactone Family

    No full text
    Five new members of the salinilactone family, salinilactones D-H, are reported. These bicyclic lactones are produced by Salinispora bacteria and display extended or shortened alkyl side chains relative to the recently reported salinilactones A-C. They were identified by GC/MS, gas chromatographic retention index, and comparison with synthetic samples. We further investigated the occurrence of salinilactones across six newly proposed Salinispora species to gain insight into how compound production varies among taxa. The growth-inhibiting effect of this compound family on multiple biological systems including non-Salinispora actinomycetes was analyzed. Additionally, we found strong evidence for significant cytotoxicity of the title compounds

    Structure and Candidate Biosynthetic Gene Cluster of a Manumycin-Type Metabolite from Salinispora pacifica

    No full text
    A new manumycin-type natural product named pacificamide (1) and its candidate biosynthetic gene cluster (pac) were discovered from the marine actinobacterium Salinispora pacifica CNT-855. The structure of the compound was determined using NMR, electronic circular dichroism, and bioinformatic predictions. The pac gene cluster is unique to S. pacifica and found in only two of the 119 Salinispora genomes analyzed across nine species. Comparative analyses of biosynthetic gene clusters encoding the production of related manumycin-type compounds revealed genetic differences in accordance with the unique pacificamide structure. Further queries of manumycin-type gene clusters from public databases revealed their limited distribution across the phylum Actinobacteria and orphan diversity that suggests additional products remain to be discovered in this compound class. Production of the known metabolite triacsin D is also reported for the first time from the genus Salinispora. This study adds two classes of compounds to the natural product collective isolated from the genus Salinispora, which has proven to be a useful model for natural product research

    Expansion of Gamma-Butyrolactone Signaling Molecule Biosynthesis to Phosphotriester Natural Products

    No full text
    Bacterial hormones, such as the iconic gamma-butyrolactone A-factor, are essential signaling molecules that regulate diverse physiological processes, including specialized metabolism. These low molecular weight compounds are common in Streptomyces species and display species-specific structural differences. Recently, unusual gamma-butyrolactone natural products called salinipostins were isolated from the marine actinomycete genus Salinispora based on their antimalarial properties. As the salinipostins possess a rare phosphotriester motif of unknown biosynthetic origin, we set out to explore its construction by the widely conserved 9-gene spt operon in Salinispora species. We show through a series of in vivo and in vitro studies that the spt gene cluster dually encodes the salinipostins and newly identified natural A-factor-like gamma-butyrolactones (Sal-GBLs). Remarkably, homologous biosynthetic gene clusters are widely distributed among many actinomycete genera, including Streptomyces, suggesting the significance of this operon in bacteria

    The Natural Product Domain Seeker version 2 (NaPDoS2) webtool relates ketosynthase phylogeny to biosynthetic function.

    No full text
    The Natural Product Domain Seeker (NaPDoS) webtool detects and classifies ketosynthase (KS) and condensation domains from genomic, metagenomic, and amplicon sequence data. Unlike other tools, a phylogeny-based classification scheme is used to make broader predictions about the polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes in which these domains are found. NaPDoS is particularly useful for the analysis of incomplete biosynthetic genes or gene clusters, as are often observed in poorly assembled genomes and metagenomes, or when loci are not clustered, as in eukaryotic genomes. To help support the growing interest in sequence-based analyses of natural product biosynthetic diversity, here we introduce version 2 of the webtool, NaPDoS2, available at http://napdos.ucsd.edu/napdos2. This update includes the addition of 1417 KS sequences, representing a major expansion of the taxonomic and functional diversity represented in the webtool database. The phylogeny-based KS classification scheme now recognizes 41 class and subclass assignments, including new type II PKS subclasses. Workflow modifications accelerate run times, allowing larger datasets to be analyzed. In addition, default parameters were established using statistical validation tests to maximize KS detection and classification accuracy while minimizing false positives. We further demonstrate the applications of NaPDoS2 to assess PKS biosynthetic potential using genomic, metagenomic, and PCR amplicon datasets. These examples illustrate how NaPDoS2 can be used to predict biosynthetic potential and detect genes involved in the biosynthesis of specific structure classes or new biosynthetic mechanisms
    corecore