93 research outputs found

    A novel mechanism for bubble formation in fluidized systems: The effects of granular temperature on the stability in fluidization

    Get PDF
    This work contains a novel approach for the study of stability in fluidized systems. It includes the influence of solid particle kinetic energy variations, which are known as granular temperature. The stability is verified by the temporal evolution of bed fluid-dynamics properties (solid volumetric fraction, fluid velocity, solid particles velocity) after small perturbations. The bed is stable when the amplitudes of perturbations decrease with time. The work departs from the mass and momentum continuity equations for the solid and fluid phase, as proposed by Anderson and Jackson (1968). Those are complemented by an equation describing the energy balance from the point of view of granular temperature. Then, a linear approximation for the equations after the introduction of small magnitude perturbations is obtained. The application of harmonic solutions allows arriving to the temporal description of the perturbations. Results show the occurrence of instabilities on the direction transverse to gravity. This cannot be observed by previous approaches (Anderson and Jackson, 1968, 1969; Homsy et al., 1980; Liu, 1982). The present work also suggests a new mechanism for the formation of bubbles in fluidized systems. The parametric influence of the model on the stability of fluidized systems is also verified.21347948

    Phototriggered release of tetrapeptide AAPV from coumarinyl and pyrenyl cages

    Get PDF
    Ala-Ala-Pro-Val (AAPV) is a bioactive tetrapeptide that inhibits human neutrophil elastase (HNE), an enzyme involved in skin chronic inflammatory diseases like psoriasis. Caged derivatives of this peptide were prepared by proper N- and C-terminal derivatisation through a carbamate or ester linkage, respectively, with two photoactive moieties, namely 7-methoxycoumarin-2-ylmethyl and pyren-2-ylmethyl groups. These groups were chosen to assess the influence of the photosensitive group and the type of linkage in the controlled photorelease of the active molecule. The caged peptides were irradiated at selected wavelengths of irradiation (254, 300, and 350 nm), and the photolytic process was monitored by HPLC-UV. The results established the applicability of the tested photoactive groups for the release of AAPV, especially for the derivative bearing the carbamate-linked pyrenylmethyl group, which displayed the shortest irradiation times for the release at the various wavelengths of irradiation (ca. 4 min at 254 nm, 8 min at 300 nm and 46 min at 350 nm).Thanks are due to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for financial support to the portuguese NMR network (PTNMR, Bruker Avance III 400- Univ. Minho), FCT and FEDER (European Fund for Regional Development)- COMPETE-QREN-EU for financial support through the Chemistry Research Centre of the University of Minho (Ref. UID/QUI/00686/2013 and UID/QUI/0686/2016). A PhD grant to A.M.S. (SFRH/BD/80813/2011) is also acknowledged.info:eu-repo/semantics/publishedVersio

    Bioactive Hydrogel Marbles

    Get PDF
    Liquid marbles represented a signifcant advance in the manipulation of fuids as they used particle flms to confne liquid drops, creating a robust and durable soft solid. We exploit this technology to engineering a bioactive hydrogel marble (BHM). Specifcally, pristine bioactive glass nanoparticles were chemically tuned to produce biocompatible hydrophobic bioactive glass nanoparticles (H-BGNPs) that shielded a gelatin-based bead. The designed BHM shell promoted the growth of a bone-like apatite layer upon immersion in a physiological environment. The fabrication process allowed the efcient incorporation of drugs and cells into the engineered structure. The BHM provided a simultaneously controlled release of distinct encapsulated therapeutic model molecules. Moreover, the BHM sustained cell encapsulation in a 3D environment as demonstrated by an excellent in vitro stability and cytocompatibility. The engineered structures also showed potential to regulate a pre-osteoblastic cell line into osteogenic commitment. Overall, these hierarchical nanostructured and functional marbles revealed a high potential for future applications in bone tissue engineering.Portuguese Foundation for Science and Technology − FCT (Grant Nos SFRH/BD/73174/2010 and SFRH/BD/73172/2010, respectively), from the program POPH/FSE from QREN. The authors would like to acknowledge the support of the European Research Council grant agreement ERC-2014-ADG-669858 for project ATLASinfo:eu-repo/semantics/publishedVersio
    corecore