40 research outputs found

    Wind-Tunnel Investigation of the Effect of Porous Spoilers on the Wake of a Subsonic Transport Model

    Get PDF
    Tests were conducted in the Ames Research Center 40- by 80-Foot Wind Tunnel to determine how porosity of wing spoilers on a B-747 airplane would affect the rolling moments imposed on an aircraft following in the wake. It was found that spoilers with 40 percent porosity and hole diameter to thickness ratio of 1.1 were just as effective in reducing the rolling moment imposed on the follower as solid spoilers, for the case of two spoilers per wing panel (6.4 percent semispan each) with a following model whose span was 20 percent of the span of the generator. When a larger following model was tested, whose span was 50 percent of that of the generator, the effectiveness of the two spoilers per wing was substantially reduced

    Aircraft wake-vortex minimization by use of flaps

    Get PDF
    A survey was made of research on the alleviation of the trailing vortex hazard by altering span loading with flaps on the generator airplane. Flap configurations of the generator that shed multiple vortices were found to have wakes that dispersed by vortex merging and sinusoidal instability. Reductions of approximately 50 percent in both the wake rolling moment imposed on a following aircraft and the aircraft separation requirement were achieved in the ground based and flight test experiments by deflecting the trailing edge flaps more inboard than outboard. Significantly, this configuration did not increase the drag or vibration on the generating aircraft compared to the conventional landing configuration. Ground based results of rolling moment measurement and flow visualization are shown, using a water tow facility, an air tow facility, and a wind tunnel. Flight test results are also shown, using a full scale B-747 airplane. General agreement was found among the results of the various ground based facilities and the flight tests

    Experimental study of the effect on span loading on aircraft wakes

    Get PDF
    Measurements were made in the NASA-Ames 40- by 80-foot wind tunnel of the rolling moment induced on a following model in the wake 13.6 spans behind a subsonic transport model for a variety of trailing edge flap settings of the generator. It was found that the rolling moment on the following model was reduced substantially, compared to the conventional landing configuration, by reshaping the span loading on the generating model to approximate a span loading, found in earlier studies, which resulted in reduced wake velocities. This was accomplished by retracting the outboard trailing edge flaps. It was concluded, based on flow visualization conducted in the wind tunnel as well as in a water tow facility, that this flap arrangement redistributes the vorticity shed by the wing along the span to form three vortex pairs that interact to disperse the wake

    Measurements of the vortex wakes of a subsonic and supersonic transport model in the 40 by 80 foot wind tunnel

    Get PDF
    The rolling moment induced on aircraft models in the wake of a model of a subsonic transport and of a supersonic transport was measured as a function of angle of attack for several configurations. The tests are described and an analysis of the data is given in this memorandum

    Aerodynamic characteristics of the 40- by 80/80- by 120-foot wind tunnel at NASA Ames Research Center

    Get PDF
    The design and testing of vane sets and air-exchange inlet for the 40 x 80/80 x 120-ft wind tunnel at NASA Ames are reported. Boundary-layer analysis and 2D and 3D inviscid panel codes are employed in computer models of the system, and a 1/10-scale 2D facility and a 1/50-scale 3D model of the entire wind tunnel are used in experimental testing of the vane sets. The results are presented in graphs, photographs, drawings, and diagrams are discussed. Generally good agreement is found between the predicted and measured performance

    Scanning laser-velocimeter surveys and analysis of multiple vortex wakes of an aircraft

    Get PDF
    A laser velocimeter capable of rapidly scanning a flow field while simultaneously sensing two components of the velocity was used to measure the vertical and streamwise velocity structure 1.5 spans downstream in the wake of a model typical of a large subsonic transport (Boeing 747). This flow field was modeled by a superposition of axisymmetric vortices with finite cores. This theoretical model was found to agree with the measured velocities everywhere except where two vortices were in close proximity. Vortex strengths derived from the span loading on the wing as predicted by vortex-lattice theory also agree with the present measurements. The axisymmetric vortex model used herein is a useful tool for analytically investigating the vortex wakes of aircraft

    Explicit Model Following Control Scheme Incorporating Integral Feedback

    No full text
    corecore