15 research outputs found
Lachnospira pectinoschiza sp. nov., an Anaerobic Pectinophile from the Pig Intestine
Pectinophiles are bacteria that utilize pectin and only a few related compounds as substrates. Obligately anaerobic pectinophiles have been isolated from the intestinal tracts and gingivae of humans and from the rumina of cattle. We isolated three strains of pectinophilic bacteria from colonic contents of pigs but were unable to isolate pectinophiles from the rumen contents of four sheep, even when the animals were fed a high-pectin diet. The pectinophiles isolated from pigs were strictly anaerobic, motile, gram-positive rods (0.36 to 0.56 by 2.4 to 3.1 ÎĽm). Pectin, polygalacturonic acid, and gluconate were the only substrates that supported rapid growth. All three strains grew slowly on either lactose or cellobiose and fermented fructose after a lag of several days. Pectin was degraded by means of an extracellular pectin methylesterase and a Ca2+-dependent exopectate lyase. A comparison of the 16S rRNA sequences of these isolates with the 16S rRNA sequences of other gram-positive bacteria revealed a specific relationship with Lachnospira multipara (level of similarity, 94%). The Gram reaction, formation of spore-like structures, and the utilization of lactose and cellobiose differentiated the pig isolates from previously described pectinophiles. The pig isolates represent a previously undescribed species of the genus Lachnospira, for which we propose the name Lachnospira pectinoschiza
Long Polar Fimbriae Contribute to Colonization by \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 In Vivo
The contribution of long polar fimbriae to intestinal colonization by Escherichia coli O157:H7 was evaluated in sheep, conventional pigs, and gnotobiotic piglets. E. coli O157:H7 strains with lpfA1 and lpfA2 mutated were recovered in significantly lower numbers and caused fewer attachment and effacement lesions than the parent strain
Transmission and Infectious Dose of Escherichia coli O157:H7 in Swine
Escherichia coli O157:H7 is only occasionally isolated from healthy swine, but some experimentally infected animals will shed the organism in their feces for at least 2 months. Potential explanations for the paucity of naturally occurring infections in swine, as compared to cattle, include a lack of animal-to-animal transmission so that the organism cannot be maintained within a herd, a high infectious dose, or herd management practices that prevent the maintenance of the organism in the gastrointestinal tract. We hypothesized that donor pigs infected with E. coli O157:H7 would transmit the organism to naĂŻve pigs. We also determined the infectious dose and whether housing pigs individually on grated floors would decrease the magnitude or duration of fecal shedding. Infected donor pigs shedding <10(4) CFU of E. coli O157:H7 per g transmitted the organism to 6 of 12 naĂŻve pigs exposed to them. The infectious dose of E. coli O157:H7 for 3-month-old pigs was approximately 6 Ă— 10(3) CFU. There was no difference in the magnitude and duration of fecal shedding by pigs housed individually on grates compared to those housed two per pen on cement floors. These results suggest that swine do not have an innate resistance to colonization by E. coli O157:H7 and that they could serve as a reservoir host under suitable conditions
Transmission and Infectious Dose of Escherichia coli O157:H7 in Swine
Escherichia coli O157:H7 is only occasionally isolated from healthy swine, but some experimentally infected animals will shed the organism in their feces for at least 2 months. Potential explanations for the paucity of naturally occurring infections in swine, as compared to cattle, include a lack of animal-to-animal transmission so that the organism cannot be maintained within a herd, a high infectious dose, or herd management practices that prevent the maintenance of the organism in the gastrointestinal tract. We hypothesized that donor pigs infected with E. coli O157:H7 would transmit the organism to naĂŻve pigs. We also determined the infectious dose and whether housing pigs individually on grated floors would decrease the magnitude or duration of fecal shedding. Infected donor pigs shedding 4 CFU of E. coli O157:H7 per g transmitted the organism to 6 of 12 naĂŻve pigs exposed to them. The infectious dose of E. coli O157:H7 for 3-month-old pigs was approximately 6 Ă— 103 CFU. There was no difference in the magnitude and duration of fecal shedding by pigs housed individually on grates compared to those housed two per pen on cement floors. These results suggest that swine do not have an innate resistance to colonization by E. coli O157:H7 and that they could serve as a reservoir host under suitable conditions.This article is from Applied and Environmental Microbiology 70 (2004): 5331, doi:10.1128/AEM.70.9.5331-5335.2004. Posted with permission.</p
Persistent Colonization of Sheep by Escherichia coli O157:H7 and Other E. coli Pathotypes
Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coliO157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 107 or 1010CFU/strain/animal. The other strains were given only at 1010CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 107 or 1010 CFU. One of the ETEC strains also persisted when inoculated at 1010 CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 107 CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes ofE. coli.This article is from Applied and Environmental Microbiology 66 (2000): 4926, doi:10.1128/AEM.66.11.4926-4934.2000.</p
Persistent Colonization of Sheep by Escherichia coli O157:H7 and Other E. coli Pathotypes
Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coli O157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 10(7) or 10(10) CFU/strain/animal. The other strains were given only at 10(10) CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 10(7) or 10(10) CFU. One of the ETEC strains also persisted when inoculated at 10(10) CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 10(7) CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes of E. coli
Lachnospira pectinoschiza sp. nov., an Anaerobic Pectinophile from the Pig Intestine
Pectinophiles are bacteria that utilize pectin and only a few related compounds as substrates. Obligately anaerobic pectinophiles have been isolated from the intestinal tracts and gingivae of humans and from the rumina of cattle. We isolated three strains of pectinophilic bacteria from colonic contents of pigs but were unable to isolate pectinophiles from the rumen contents of four sheep, even when the animals were fed a high-pectin diet. The pectinophiles isolated from pigs were strictly anaerobic, motile, gram-positive rods (0.36 to 0.56 by 2.4 to 3.1 ÎĽm). Pectin, polygalacturonic acid, and gluconate were the only substrates that supported rapid growth. All three strains grew slowly on either lactose or cellobiose and fermented fructose after a lag of several days. Pectin was degraded by means of an extracellular pectin methylesterase and a Ca2+-dependent exopectate lyase. A comparison of the 16S rRNA sequences of these isolates with the 16S rRNA sequences of other gram-positive bacteria revealed a specific relationship with Lachnospira multipara (level of similarity, 94%). The Gram reaction, formation of spore-like structures, and the utilization of lactose and cellobiose differentiated the pig isolates from previously described pectinophiles. The pig isolates represent a previously undescribed species of the genus Lachnospira, for which we propose the name Lachnospira pectinoschiza.This article is from International Journal of Systematic Microbiology 44 (1994): 84, doi:10.1099/00207713-44-1-87.</p
Cattle lack vascular receptors for \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Shiga toxins
Escherichia coli O157:H7 causes Shiga toxin (Stx)-mediated vascular damage, resulting in hemorrhagic colitis and the hemolytic uremic syndrome in humans. These infections are often food-borne, and healthy carrier cattle are a major reservoir of E. coli O157:H7. We were interested in knowing why cattle are tolerant to infection with E. coli O157:H7. Cattle tissues were examined for the Stx receptor globotriaosylceramide (Gb3), for receptivity to Stx binding in vitro, and for susceptibility to the enterotoxic effects of Stx in vivo. TLC was used to detect Gb3 in tissues from a newborn calf. Gb3 was detected by TLC in kidney and brain, but not in the gastrointestinal tract. Immunohistochemistry was used to define binding of Stx1 and Stx2 overlaid onto sections from cattle tissues. Stx1 and Stx2 bound to selected tubules in the cortex of the kidney of both newborn calves (n=3) and adult cattle (n=3). Stx did not bind to blood vessels in any of the six gastrointestinal and five extraintestinal organs examined. The lack of Gb3 and of Stx receptivity in the gastrointestinal tract raised questions about the toxicity of Stx in bovine intestine. We found that neither viable E. coli O157:H7 nor Stx-containing bacterial extracts were enterotoxic (caused fluid accumulation) in ligated ileal loops in newborn calves. The lack of vascular receptors for Stx provides insight into why cattle are tolerant reservoir hosts for E. coli O157:H7
Neonatal Piglets Are Protected from Clostridioides difficile Infection by Age-Dependent Increase in Intestinal Microbial Diversity
While Clostridioides difficile is recognized as an important human pathogen, it is also a significant cause of gastroenteritis and associated diarrhea in neonatal pigs. Since clinical disease is rarely diagnosed in piglets older than 1 week of age, it is hypothesized that natural resistance is associated with the increased complexity of the intestinal microbiota as the animals age. To test this, piglets were challenged with C. difficile (ribotype 078/toxinotype V) at times ranging from 2 to 14 days of age, and the severity of disease and microbial diversity of the cecal microbiota were assessed. Half of the piglets that were challenged with C. difficile at 2 and 4 days of age developed clinical signs of disease. The incidence of disease decreased rapidly as the piglets aged, to a point where none of the animals challenged after 10 days of age showed clinical signs. The cecal microbial community compositions of the piglets also clustered by age, with those of animals 2 to 4 days old showing closer relationships to one another than to those of older piglets (8 to 14 days). This clustering occurred across litters from 4 different sows, providing further evidence that the resistance to C. difficile disease in piglets greater than 1 week old is directly related to the diversity and complexity of the intestinal microbiota.This article is published as Proctor, Alexandra, Nancy A. Cornick, Chong Wang, Shankumar Mooyottu, Paulo A. Arruda, Kayce Kobs, and Gregory J. Phillips. "Neonatal piglets are protected from Clostridioides difficile infection by age-dependent increase in intestinal microbial diversity." Microbiology Spectrum 9, no. 2 (2021): e01243-21.
DOI: 10.1128/Spectrum.01243-21.
Copyright 2021 Proctor et al.
Attribution 4.0 International (CC BY 4.0).
Posted with permission