36 research outputs found

    Mechanism of primitive duct formation in the pancreas and submandibular glands: a role for SDF-1

    Get PDF
    BACKGROUND: The exocrine pancreas is composed of a branched network of ducts connected to acini. They are lined by a monolayered epithelium that derives from the endoderm and is surrounded by mesoderm-derived mesenchyme. The morphogenic mechanisms by which the ductal network is established as well as the signaling pathways involved in this process are poorly understood. RESULTS: By morphological analyzis of wild-type and mutant mouse embryos and using cultured embryonic explants we investigated how epithelial morphogenesis takes place and is regulated by chemokine signaling. Pancreas ontogenesis displayed a sequence of two opposite epithelial transitions. During the first transition, the monolayered and polarized endodermal cells give rise to tissue buds composed of a mass of non polarized epithelial cells. During the second transition the buds reorganize into branched and polarized epithelial monolayers that further differentiate into tubulo-acinar glands. We found that the second epithelial transition is controlled by the chemokine Stromal cell-Derived Factor (SDF)-1. The latter is expressed by the mesenchyme, whereas its receptor CXCR4 is expressed by the epithelium. Reorganization of cultured pancreatic buds into monolayered epithelia was blocked in the presence of AMD3100, a SDF-1 antagonist. Analyzis of sdf1 and cxcr4 knockout embryos at the stage of the second epithelial transition revealed transient defective morphogenesis of the ventral and dorsal pancreas. Reorganization of a globular mass of epithelial cells in polarized monolayers is also observed during submandibular glands development. We found that SDF-1 and CXCR4 are expressed in this organ and that AMD3100 treatment of submandibular gland explants blocks its branching morphogenesis. CONCLUSION: In conclusion, our data show that the primitive pancreatic ductal network, which is lined by a monolayered and polarized epithelium, forms by remodeling of a globular mass of non polarized epithelial cells. Our data also suggest that SDF-1 controls the branching morphogenesis of several exocrine tissues.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Transcriptional regulation of bile duct morphogenesis

    No full text
    info:eu-repo/semantics/nonPublishe

    Role of β-catenin in development of bile ducts

    Get PDF
    Beta-catenin is known to play stage- and cell-specific functions during liver development. However, its role in development of bile ducts has not yet been addressed. Here we used stage-specific in vivo gain- and loss-of-function approaches, as well as lineage tracing experiments in the mouse, to first demonstrate that β-catenin is dispensable for differentiation of liver precursor cells (hepatoblasts) to cholangiocyte precursors. Second, when β-catenin was depleted in the latter, maturation of cholangiocytes, bile duct morphogenesis and differentiation of periportal hepatocytes from cholangiocyte precursors was normal. In contrast, stabilization of β-catenin in cholangiocyte precursors perturbed duct development and cholangiocyte differentiation. We conclude that β-catenin is dispensable for biliary development but that its activity must be kept within tight limits. Our work is expected to significantly impact on in vitro differentiation of stem cells to cholangiocytes for toxicology studies and disease modeling

    Novel COL4A1-VEGFD gene fusion in myofibroma.

    No full text
    Myofibroma is a benign pericytic tumour affecting young children. The presence of multicentric myofibromas defines infantile myofibromatosis (IMF), which is a life-threatening condition when associated with visceral involvement. The disease pathophysiology remains poorly characterized. In this study, we performed deep RNA sequencing on eight myofibroma samples, including two from patients with IMF. We identified five different in-frame gene fusions in six patients, including three previously described fusion transcripts, SRF-CITED1, SRF-ICA1L and MTCH2-FNBP4, and a fusion of unknown significance, FN1-TIMP1. We found a novel COL4A1-VEGFD gene fusion in two cases, one of which also carried a PDGFRB mutation. We observed a robust expression of VEGFD by immunofluorescence on the corresponding tumour sections. Finally, we showed that the COL4A1-VEGFD chimeric protein was processed to mature VEGFD growth factor by proteases, such as the FURIN proprotein convertase. In conclusion, our results unravel a new recurrent gene fusion that leads to VEGFD production under the control of the COL4A1 gene promoter in myofibroma. This fusion is highly reminiscent of the COL1A1-PDGFB oncogene associated with dermatofibrosarcoma protuberans. This work has implications for the diagnosis and, possibly, the treatment of a subset of myofibromas

    Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts

    Get PDF
    In developing liver, cholangiocytes derive from the hepatoblasts and organize to form the bile ducts. Earlier work has shown that the SRY-related High Mobility Group box transcription factor 9 (SOX9) is transiently required for bile duct development, raising the question of the potential involvement of other SOX family members in biliary morphogenesis. Here we identify SOX4 as a new regulator of cholangiocyte development. Liver-specific inactivation of SOX4, combined or not with inactivation of SOX9, affects cholangiocyte differentiation, apico-basal polarity and bile duct formation. Both factors cooperate to control the expression of mediators of the Transforming Growth Factor-β, Notch, and Hippo-Yap signaling pathways, which are required for normal development of the bile ducts. In addition, SOX4 and SOX9 control formation of primary cilia, which are known signaling regulators. The two factors also stimulate secretion of laminin α5, an extracellular matrix component promoting bile duct maturation. We conclude that SOX4 is a new regulator of liver development and that it exerts a pleiotropic control on bile duct development in cooperation with SOX9

    Temporal dynamics of a CSF1R signaling gene regulatory network involved in epilepsy

    No full text
    Colony Stimulating Factor 1 Receptor (CSF1R) is a potential target for anti-epileptic drugs. However, inhibition of CSF1R is not well tolerated by patients, thereby prompting the need for alternative targets. To develop a framework for identification of such alternatives, we here develop a mathematical model of a pro-inflammatory gene regulatory network (GRN) involved in epilepsy and centered around CSF1R. This GRN comprises validated transcriptional and post-transcriptional regulations involving STAT1, STAT3, NFκB, IL6R, CSF3R, IRF8, PU1, C/EBPα, TNFR1, CSF1 and CSF1R. The model was calibrated on mRNA levels of all GRN components in lipopolysaccharide (LPS)-treated mouse microglial BV-2 cells, and allowed to predict that STAT1 and STAT3 have the strongest impact on the expression of the other GRN components. Microglial BV-2 cells were selected because, the modules from which the GRN was deduced are enriched for microglial marker genes. The function of STAT1 and STAT3 in the GRN was experimentally validated in BV-2 cells. Further, in silico analysis of the GRN dynamics predicted that a pro-inflammatory stimulus can induce irreversible bistability whereby the expression level of GRN components occurs as two distinct states. The irreversibility of the switch may enforce the need for chronic inhibition of the CSF1R GRN in order to achieve therapeutic benefit. The cell-to-cell heterogeneity driven by the bistability may cause variable therapeutic response. In conclusion, our modeling approach uncovered a GRN controlling CSF1R that is predominantly regulated by STAT1 and STAT3. Irreversible inflammation-induced bistability and cell-to-cell heterogeneity of the GRN provide a theoretical foundation to the need for chronic GRN control and the limited potential for disease modification via inhibition of CSF1R

    Interleukin 1beta mediates the effect of high D-glucose on the secretion of TNF-alpha by mouse uterine epithelial cells.

    No full text
    Previous observations have shown that tumour necrosis factor alpha (TNF-alpha) synthesis is increased in the uterus of diabetic rats and that the epithelial layer lining the uterine lumen is the major site of TNF-alpha over-production. In the present study, TNF-alpha secretion was found to be stimulated by high D-glucose levels in primary cultures of mouse uterine luminal cells but not in cultures of the mouse uterine epithelial WEG-1 cell line. Experiments were performed to investigate the possibility that non-epithelial cells may mediate the influence of high D-glucose on TNF-alpha production by uterine epithelial cells. Immunocytochemical analysis revealed the reproducible presence of a small proportion of macrophages in primary cultures. Macrophages of the RAW 264.7 cell line were found to secrete more interleukin (IL)-1beta (but not TNF-alpha) when cultured in high D-glucose. TNF-alpha production in WEG-1 cells was increased upon exposure to IL-1beta and both protein kinase-C and tyrosine kinase pathways appeared to be involved in TNF-alpha stimulation. Addition of IL-1 receptor antagonist to primary cultures partially abrogated the effect of high D-glucose. Since WEG-1 cells do not produce IL-1beta, the data lend support to the hypothesis that uterine epithelial cells synthesize high levels of TNF-alpha in response to hyperglycaemia via an increase in IL-1beta secretion by stromal macrophages

    KRAS protein expression becomes progressively restricted during embryogenesis and in adulthood.

    No full text
    KRAS mutants are common in many cancers and wild-type KRAS is essential in development as its absence causes embryonic lethality. Despite this critical role in development and disease, the normal expression pattern of KRAS protein is still largely unknown at the tissue level due to the lack of valid antibodies. To address this issue, we used the mouse model in which the Citrine-KRAS (Cit-K) fusion protein functions as a validated surrogate of endogenous KRAS protein that can be detected on tissue sections by immunolabeling with a GFP antibody. In the embryo, we found expression of KRAS protein in a wide range of organs and tissues. This expression tends to decrease near birth, mainly in mesenchymal cells. During transition to the adult stage, the dynamics of KRAS protein expression vary among organs and detection of KRAS becomes restricted to specific cell types. Furthermore, we found that steady state KRAS protein expression is detectable at the cell membrane and in the cytoplasm and that this subcellular partitioning differed among cell types. Our results reveal hitherto unanticipated dynamics in developmental, tissular, cell-specific and subcellular expression of KRAS protein. They provide insight into the reason why specific cell-types are sensitive to KRAS mutations during cancer initiation

    Activation of nuclear factor kappaB and induction of apoptosis by tumor necrosis factor-alpha in the mouse uterine epithelial WEG-1 cell line.

    No full text
    In order to better understand how tumor necrosis factor (TNF)-alpha may contribute to the local regulation of uterine cell death, cultures of mouse uterine epithelial WEG-1 cells were exposed to TNF-alpha and observed at different time intervals. Earliest decrease in cell viability was observed after 31 h of exposure to 50 ng/ml mouse TNF-alpha and was associated with the expression of several markers of apoptosis. Treatment with human TNF-alpha or addition of a neutralizing antibody against TNF-alpha receptor protein 80 to mouse TNF-alpha resulted in attenuated induction of apoptosis, suggesting that coengagement of the two TNF-alpha receptor types is required for maximal impact. Ceramide analogs failed to replicate the effect of TNF-alpha and the stress-activated protein kinase signaling pathway was not activated by the cytokine. Treatment with mouse TNF-alpha resulted in an increase in nuclear factor (NF)kappaB activity that receded after 24 h. The impact of human TNF-alpha on NFkappaB activation was more moderate. Addition of either one of three different inhibitors of NFkappaB (SN50, PDTC, and A771726) to mouse TNF-alpha sensitized WEG-1 cells to the toxicity of the cytokine. Our data suggest that WEG-1 cells initiate their response to TNF-alpha with an increase in NFkappaB activation that may have transiently biased these cells toward cell death resistance
    corecore