30 research outputs found

    Resistance to Fracture of Two All-Ceramic Crown Materials Following Endodontic Access

    Get PDF
    Statement of problem There is currently no protocol for managing endodontic access openings for all-ceramic crowns. A direct restorative material is generally used to repair the access opening, rendering a repaired crown as the definitive restoration. This endodontic procedure, however, may weaken the restoration or initiate microcracks that may propagate, resulting in premature failure of the restoration. Purpose The purpose of this in vitro study was to evaluate how an endodontic access opening prepared through an all-ceramic crown altered the structural integrity of the ceramic, and the effect of a repair of this access on the load to failure of an all-ceramic crown. Material and methods Twenty-four alumina (Procera) and 24 zirconia (Procera) crowns were fabricated and cemented (Rely X Luting Plus Cement) onto duplicate epoxy resin dies. Twelve crowns of each were accessed to simulate root canal treatment therapy. Surface defects of all accessed specimens were evaluated with an environmental scanning electron microscope. The specimens were repaired with a porcelain repair system (standard adhesive resin/composite resin protocol) and were loaded to failure in a universal testing machine. Observations made visually and microscopically noted veneer delamination from the core, core fracture, shear within the veneer porcelain, or a combination thereof. A Kruskal-Wallis test was used to determine if a significant difference (α=.05) in load to failure existed between the 4 groups, and a Mann-Whitney test with a Bonferroni correction (P Results All specimens exhibited edge chipping around the access openings. Some displayed larger chips within the veneering porcelain, and 4 zirconia crowns showed radial crack formation. There was a significant difference in load to failure among all groups with the exception of the alumina intact and repaired specimens (P=.695). The alumina crowns generally showed fracture of the coping with the veneering porcelain still bonded to the core, whereas the zirconia copings tended not to fracture but experienced veneering porcelain delamination. Conclusion Endodontic access through all-ceramic crowns resulted in a significant loss of strength in the zirconia specimens but not in the alumina specimens

    Convergence of a common solution to broad ebolavirus neutralization by glycan cap directed human antibodies

    Get PDF
    Antibodies that target the glycan cap epitope on ebolavirus glycoprotein (GP) are common in the adaptive response of survivors. A subset is known to be broadly neutralizing, but the details of their epitopes and basis for neutralization is not well-understood. Here we present cryo-electron microscopy (cryo-EM) structures of several glycan cap antibodies that variably synergize with GP base-binding antibodies. These structures describe a conserved site of vulnerability that anchors the mucin-like domains (MLD) to the glycan cap, which we name the MLD-anchor and cradle. Antibodies that bind to the MLD-cradle share common features, including the use of IGHV1-69 and IGHJ6 germline genes, which exploit hydrophobic residues and form beta-hairpin structures to mimic the MLD-anchor, disrupt MLD attachment, destabilize GP quaternary structure and block cleavage events required for receptor binding. Our results collectively provide a molecular basis for ebolavirus neutralization by broadly reactive glycan cap antibodies

    Structural Basis of Pan-Ebolavirus Neutralization by an Antibody Targeting the Glycoprotein Fusion Loop

    No full text
    Summary: Monoclonal antibodies (mAbs) with pan-ebolavirus cross-reactivity are highly desirable, but development of such mAbs is limited by a lack of a molecular understanding of cross-reactive epitopes. The antibody ADI-15878 was previously identified from a human survivor of Ebola virus Makona variant (EBOV/Mak) infection. This mAb demonstrated potent neutralizing activity against all known ebolaviruses and provided protection in rodent and ferret models against three ebolavirus species. Here, we describe the unliganded crystal structure of ADI-15878 as well as the cryo-EM structures of ADI-15878 in complex with the EBOV/Mak and Bundibugyo virus (BDBV) glycoproteins (GPs). ADI-15878 binds through an induced-fit mechanism by targeting highly conserved residues in the internal fusion loop (IFL), bridging across GP protomers via the heptad repeat 1 (HR1) region. Our structures provide a more complete description of the ebolavirus immunogenic landscape, as well as a molecular basis for how rare but potent antibodies target conserved filoviral fusion machinery. : The threat of another major filoviral outbreaks looms, underlined by the current lack of approved vaccines or therapeutics. Murin et al. describe the molecular nature of neutralization by the human survivor pan-ebolavirus antibody ADI-15878. Their structures collectively provide a blueprint that can aid in the development of more potent pan-ebolavirus therapeutics. Keywords: Ebola virus, Bundibugyo virus, pan-filoviral, filovirus, antibody, glycoprotei

    Co-evolution of HIV Envelope and Apex-Targeting Neutralizing Antibody Lineage Provides Benchmarks for Vaccine Design

    No full text
    Summary: Broadly neutralizing antibodies (bnAbs) targeting the HIV envelope glycoprotein (Env) typically take years to develop. Longitudinal analyses of both neutralizing antibody lineages and viruses at serial time points during infection provide a basis for understanding the co-evolutionary contest between HIV and the humoral immune system. Here, we describe the structural characterization of an apex-targeting antibody lineage and autologous clade A viral Env from a donor in the Protocol C cohort. Comparison of Ab-Env complexes at early and late time points reveals that, within the antibody lineage, the CDRH3 loop rigidifies, the bnAb angle of approach steepens, and surface charges are mutated to accommodate glycan changes. Additionally, we observed differences in site-specific glycosylation between soluble and full-length Env constructs, which may be important for tuning optimal immunogenicity in soluble Env trimers. These studies therefore provide important guideposts for design of immunogens that prime and mature nAb responses to the Env V2-apex. : Rantalainen et al. describe the structural co-evolution of HIV envelope glycoprotein and antibody response in a single donor from the Protocol C cohort. The co-evolutionary mechanisms include antibody binding angle maturation, gradual loop rigidification, surface charge modulation, and changes in glycan contacts. Keywords: broadly neutralizing antibody, HIV, evolution, Protocol C, cryo-EM, structur

    Neutralizing antibodies induced by first-generation gp41-stabilized HIV-1 envelope trimers and nanoparticles

    No full text
    The immunogenicity of gp41-stabilized HIV-1 BG505 envelope (Env) trimers and nanoparticles (NPs) was recently assessed in mice and rabbits. Here, we combined Env-specific B-cell sorting and repertoire sequencing to identify neutralizing antibodies (NAbs) from immunized animals. A panel of mouse NAbs was isolated from mice immunized with a 60-meric I3-01 NP presenting 20 stabilized trimers. Three mouse NAbs potently neutralized BG505.T332N by recognizing a glycan epitope centered in the C3/V4 region on BG505 Env, as revealed by electron microscopy (EM), X-ray crystallography, and epitope mapping. A set of rabbit NAbs was isolated from rabbits immunized with a soluble trimer and a 24-meric ferritin NP presenting 8 trimers. Neutralization assays against BG505.T332N variants confirmed that potent rabbit NAbs targeted previously described glycan holes on BG505 Env and accounted for a significant portion of the autologous NAb response in both the trimer and ferritin NP groups. Last, we examined NAb responses that were induced by non-BG505 Env immunogens. We determined a 3.4-Å-resolution crystal structure for the clade C transmitted/founder (T/F) Du172.17 Env with a redesigned heptad repeat 1 (HR1) bend in gp41. This clade C Env, in a soluble trimer form and in a multivalent form with 8 trimers attached to ferritin NP, and the gp41-stabilized clade A Q482-d12 Env trimer elicited distinct NAb responses in rabbits, with notable differences in neutralization breadth. Although eliciting a broad NAb response remains a major challenge, our study provides valuable information on an HIV-1 vaccine design strategy that combines gp41 stabilization and NP display. IMPORTANCE Self-assembling protein nanoparticles (NPs) presenting BG505 envelope (Env) trimers can elicit tier 2 HIV-1-neutralizing antibody (NAb) responses more effectively than soluble trimers. In the present study, monoclonal NAbs were isolated from previously immunized mice and rabbits for structural and functional analyses, which revealed that potent mouse NAbs recognize the C3/V4 region and small NP-elicited rabbit NAbs primarily target known glycan holes on BG505 Env. This study validates the gp41 stabilization strategy for HIV-1 Env vaccine design and highlights the challenge in eliciting a broad NAb response.</p

    Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies.........

    No full text
    The fusion peptide (FP) of HIV-1 envelope glycoprotein (Env) is essential for mediating viral entry. Detection of broadly neutralizing antibodies (bnAbs) that interact with the FP has revealed it as a site of vulnerability. We delineate X-ray and cryo-electron microscopy (cryo-EM) structures of bnAb ACS202, from an HIV-infected elite neutralizer, with an FP and with a soluble Env trimer (AMC011 SOSIP.v4.2) derived from the same patient. We show that ACS202 CDRH3 forms a “β strand” interaction with the exposed hydrophobic FP and recognizes a continuous region of gp120, including a conserved N-linked glycan at N88. A cryo-EM structure of another previously identified bnAb VRC34.01 with AMC011 SOSIP.v4.2 shows that it also penetrates through glycans to target the FP. We further demonstrate that the FP can twist and present different conformations for recognition by bnAbs, which enables approach to Env from diverse angles. The variable recognition of FP by bnAbs thus provides insights for vaccine design

    Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimmers as HIV-1 vaccine candidates

    No full text
    Here the authors present an HIV-1 vaccine strategy that combines Env stabilization, nanoparticle display, and glycan trimming, which improves neutralizing antibody responses, frequency of vaccine responders, and germinal center reactions in animal models
    corecore