34 research outputs found
Constraints on a Parity-Conserving/Time-Reversal-Non-Conserving Interaction
Time-Reversal-Invariance non-conservation has now been unequivocally
demonstrated in a direct measurement at CPLEAR. What about tests of
time-reversal-invariance in systems other than the kaon system? Tests of
time-reversal-invariance belong to two classes: searches for parity violating
(P-odd)/time-reversal-invariance-odd (T-odd) interactions, and for P-even/T-odd
interactions (assuming CPT conservation this implies C-conjugation
non-conservation). Limits on a P-odd/T-odd interaction follow from measurements
of the electric dipole moment of the neutron (with a present upper limit of 6 x
10^-26 e.cm [95% C.L.]). It provides a limit on a P-odd/T-odd pion-nucleon
coupling constant which is less than 10^-4 times the weak interaction strength.
Experimental limits on a P-even/T-odd interaction are much less stringent.
Following the standard approach of describing the nucleon-nucleon interaction
in terms of meson exchanges, it can be shown that only charged rho-meson
exchange and A_1 meson exchange can lead to a P-even/T-odd interaction. The
better constraints stem from measurements of the electric dipole moment of the
neutron and from measurements of charge-symmetry breaking in neutron-proton
elastic scattering. The latter experiments were executed at TRIUMF (497 and 347
MeV) and at IUCF (183 MeV). Weak decay experiments may provide limits which
will possibly be comparable. All other experiments, like gamma decay
experiments, detailed balance experiments, polarization - analyzing power
difference determinations, and five-fold correlation experiments with polarized
incident nucleons and aligned nuclear targets, have been shown to be at least
an order of magnitude less sensitive.Comment: 15 pages LaTeX, including 5 PostScript figures. Uses ijmpe1.sty. To
appear in International Journal of Modern Physics E (IJMPE). Slight change in
short abstrac
Testing T Invariance in the Interaction of Slow Neutrons with Aligned Nuclei
The study of five-fold (P even, T odd) correlation in the interaction of slow
polarized neutrons with aligned nuclei is a possible way of testing the time
reversal invariance due to the expected enhancement of T violating effects in
compound resonances. Possible nuclear targets are discussed which can be
aligned both dynamically as well as by the "brute force" method at low
temperature. A statistical estimation is performed of the five-fold correlation
for low lying p wave compound resonances of the Sb, Sb and
I nuclei. It is shown that a significant improvement can be achieved
for the bound on the intensity of the fundamental parity conserving time
violating (PCTV) interaction.Comment: 22 pages, 5 figures, published versio
Optical-Model Description of Time-Reversal Violation
A time-reversal-violating spin-correlation coefficient in the total cross
section for polarized neutrons incident on a tensor rank-2 polarized target is
calculated by assuming a time-reversal-noninvariant, parity-conserving
``five-fold" interaction in the neutron-nucleus optical potential. Results are
presented for the system for neutron incident energies
covering the range 1--20 MeV. From existing experimental bounds, a strength of
keV is deduced for the real and imaginary parts of the five-fold
term, which implies an upper bound of order on the relative -odd
strength when compared to the central real optical potential.Comment: 11 pages (Revtex
Recommended from our members
Large deviations from the polarization-analyzing power equality and implied breakdown of time reversal invariance. [14 MeV]
The first test that compares the polarization (P) and the analyzing power (A) from measurements in a nuclear reaction and its inverse is reported. The reactions chosen for the P-A comparisons were the two-nucleon transfers /sup 7/Li(/sup 3/He,p)/sup 9/Be and /sup 9/Be(/sup 3/He,p)/sup 11/B, with 14-MeV incident /sup 3/He ions, and their inverses studied at the same CM energies. An astonishingly large P-A difference is found. The clear implication is that time-reversal invariance (TRI) is broken in some component of the nuclear interaction, since the polarization-analyzing power equality follows directly from TRI. 5 figures. (RWR
Recommended from our members
THE VECTOR ANALYZING POWER IN ELASTIC DEUTERON-EEUTERON SCATTERING BETWEEN 20 and 20 MeV
Recommended from our members
Naive time-reversal and other misconceptions of time-reversal invariance
Recommended from our members