3 research outputs found

    <i>Ex vivo</i> explant model of adenoma and colorectal cancer to explore mechanisms of action and patient response to cancer prevention therapies

    No full text
    Colorectal cancer (CRC) is the second leading cause of cancer death in the UK. Novel therapeutic prevention strategies to inhibit the development and progression of CRC would be invaluable. Potential contenders include low toxicity agents such as dietary-derived agents or repurposed drugs. However, in vitro and in vivo models used in drug development often do not take into account the heterogeneity of tumours or the tumour microenvironment. This limits translation to a clinical setting. Our objectives were to develop an ex vivo method utilizing CRC and adenoma patient-derived explants (PDEs) which facilitates screening of drugs, assessment of toxicity, and efficacy. Our aims were to use a multiplexed immunofluorescence approach to demonstrate the viability of colorectal tissue PDEs, and the ability to assess immune cell composition and interactions. Using clinically achievable concentrations of curcumin, we show a correlation between curcumin-induced tumour and stromal apoptosis (P < .001) in adenomas and cancers; higher stromal content is associated with poorer outcomes. B cell (CD20+ve) and T cell (CD3+ve) density of immune cells within tumour regions in control samples correlated with curcumin-induced tumour apoptosis (P < .001 and P < .05, respectively), suggesting curcumin-induced apoptosis is potentially predicted by baseline measures of immune cells. A decrease in distance between T cells (CD3+ve) and cytokeratin+ve cells was observed, indicating movement of T cells (CD3+ve) towards the tumour margin (P < .001); this change is consistent with an immune environment associated with improved outcomes. Concurrently, an increase in distance between T cells (CD3+ve) and B cells (CD20+ve) was detected following curcumin treatment (P < .001), which may result in a less immunosuppressive tumour milieu. The colorectal tissue PDE model offers significant potential for simultaneously assessing multiple biomarkers in response to drug exposure allowing a greater understanding of mechanisms of action and efficacy in relevant target tissues, that maintain both their structural integrity and immune cell compartments.</p

    Patient-Derived Tumor Explants As a "Live" Preclinical Platform for Predicting Drug Resistance in Patients

    No full text
    An understanding of drug resistance and the development of novel strategies to sensitize highly resistant cancers rely on the availability of suitable preclinical models that can accurately predict patient responses. One of the disadvantages of existing preclinical models is the inability to contextually preserve the human tumor microenvironment (TME) and accurately represent intratumoral heterogeneity, thus limiting the clinical translation of data. By contrast, by representing the culture of live fragments of human tumors, the patient-derived explant (PDE) platform allows drug responses to be examined in a three-dimensional (3D) context that mirrors the pathological and architectural features of the original tumors as closely as possible. Previous reports with PDEs have documented the ability of the platform to distinguish chemosensitive from chemoresistant tumors, and it has been shown that this segregation is predictive of patient responses to the same chemotherapies. Simultaneously, PDEs allow the opportunity to interrogate molecular, genetic, and histological features of tumors that predict drug responses, thereby identifying biomarkers for patient stratification as well as novel interventional approaches to sensitize resistant tumors. This paper reports PDE methodology in detail, from collection of patient samples through to endpoint analysis. It provides a detailed description of explant derivation and culture methods, highlighting bespoke conditions for particular tumors, where appropriate. For endpoint analysis, there is a focus on multiplexed immunofluorescence and multispectral imaging for the spatial profiling of key biomarkers within both tumoral and stromal regions. By combining these methods, it is possible to generate quantitative and qualitative drug response data that can be related to various clinicopathological parameters and thus potentially be used for biomarker identification

    An optimised patient-derived explant platform for breast cancer reflects clinical responses to chemotherapy and antibody-directed therapy

    No full text
    Breast Cancer is the most common cancer among women globally. Despite significant improvements in overall survival, many tumours are refractory to therapy and so novel approaches are required to improve patient outcomes. We have evaluated patient-derived explants (PDEs) as a novel preclinical platform for breast cancer (BC) and implemented cutting-edge digital pathology and multi-immunofluorescent approaches for investigating biomarker changes in both tumour and stromal areas at endpoint. Short-term culture of intact fragments of BCs as PDEs retained an intact immune microenvironment, and tumour architecture was augmented by the inclusion of autologous serum in the culture media. Cell death/proliferation responses to FET chemotherapy in BC-PDEs correlated significantly with BC patient progression-free survival (p = 0.012 and p = 0.0041, respectively) and cell death responses to the HER2 antibody therapy trastuzumab correlated significantly with HER2 status (p = 0.018). These studies show that the PDE platform combined with digital pathology is a robust preclinical approach for informing clinical responses to chemotherapy and antibody-directed therapies in breast cancer. Furthermore, since BC-PDEs retain an intact tumour architecture over the short-term, they facilitate the preclinical testing of anti-cancer agents targeting the tumour microenvironment.</p
    corecore