31 research outputs found

    Kuroguro Presence: A Conceptual Design Collaboration

    Get PDF
    This case study explored how a team of three fashion design instructors and practitioners developed a collaborative conceptual design, aiming to improve their teaching methods and upskill their craft via learnings from their own social interactive practice

    Tomorrow\u27s banking: Four perspectives

    Get PDF
    Illustration not included in Web versio

    Population Response to Habitat Fragmentation in a Stream-Dwelling Brook Trout Population

    Get PDF
    Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (∌45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2–6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7–46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can ‘rescue’ isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation

    Statistical strategies for avoiding false discoveries in metabolomics and related experiments

    Full text link

    Ventricular and Periventricular Anomalies in the Aging and Cognitively Impaired Brain

    No full text
    Ventriculomegaly (expansion of the brain’s fluid-filled ventricles), a condition commonly found in the aging brain, results in areas of gliosis where the ependymal cells are replaced with dense astrocytic patches. Loss of ependymal cells would compromise trans-ependymal bulk flow mechanisms required for clearance of proteins and metabolites from the brain parenchyma. However, little is known about the interplay between age-related ventricle expansion, the decline in ependymal integrity, altered periventricular fluid homeostasis, abnormal protein accumulation and cognitive impairment. In collaboration with the Baltimore Longitudinal Study of Aging (BLSA) and Alzheimer’s Disease Neuroimaging Initiative (ADNI), we analyzed longitudinal structural magnetic resonance imaging (MRI) and subject-matched fluid-attenuated inversion recovery (FLAIR) MRI and periventricular biospecimens to map spatiotemporally the progression of ventricle expansion and associated periventricular edema and loss of transependymal exchange functions in healthy aging individuals and those with varying degrees of cognitive impairment. We found that the trajectory of ventricle expansion and periventricular edema progression correlated with degree of cognitive impairment in both speed and severity, and confirmed that areas of expansion showed ventricle surface gliosis accompanied by edema and periventricular accumulation of protein aggregates, suggesting impaired clearance mechanisms in these regions. These findings reveal pathophysiological outcomes associated with normal brain aging and cognitive impairment, and indicate that a multifactorial analysis is best suited to predict and monitor cognitive decline

    Best Management Practices for Trapping Furbearers in the United States

    Get PDF
    Humans have used wild furbearers for various purposes for thousands of years. Today, furbearers are sustainably used by the public for their pelts, leather, bones, glands, meat, or other purposes. In North America, contemporary harvest of furbearers has evolved along with trap technologies and societal concerns, and is now highly regulated and more closely coupled with harvest analysis and population monitoring. Traps and regulated trapping programs provide personal or cultural rewards that can also support conservation, and can assist with advancing ecological knowledge through research, protecting endangered species, restoring populations or habitats, protecting personal property, and enhancing public health and safety. However, animal welfare and trap selectivity remain important topics for furbearer management in North America, as they have for more than a century. A related international challenge to modern furbearer management came with the Wild Fur Regulation by the European Union, which passed in 1991. This regulation prohibited use of foothold traps in many European countries and the importation of furs and manufactured fur products to Europe from countries that allowed use of foothold traps or trapping methods that did not meet internationally agreed‐upon humane trapping standards. To address existing national concerns and requirements of the Wild Fur Regulation, the United States and European Union signed a non‐binding bilateral understanding that included a commitment by the United States to evaluate trap performance and advance the use of improved traps through development of best management practices (BMPs) for trapping. Our testing followed internationally accepted restraining‐trap standards for quantifying injuries and capture efficiency, and we established BMP pass‐fail thresholds for these metrics. We also quantified furbearer selectivity, and qualitatively assessed practicality and user safety for each trap, yielding overall species‐specific performance profiles for individual trap models. We present performance data for 84 models of restraining traps (6 cage traps, 68 foothold traps, 9 foot‐encapsulating traps, and 1 power‐activated footsnare) on 19 furbearing species, or 231 trap‐species combinations. We conducted post‐mortem examinations on 8,566 furbearers captured by trappers. Of the 231 trap model‐species combinations tested, we had sufficient data to evaluate 173 combinations, of which about 59% met all BMP criteria. Pooling species, cage traps produced the lowest average injury score (common injuries included tooth breakage), with minimal differences across other trap types; species‐specific patterns were generally similar, with the exception of raccoons (Procyon lotor) for which foot‐encapsulating traps performed better than other foot‐restraining trap types. Padded‐jaw foothold traps performed better than standard‐jaw models for many species, though often similar to and occasionally worse than offset‐ or laminatedjaw models.Most traps we tested had high capture efficiency; only 5 (3%) failed BMP standards strictly because of poor efficiency. Average furbearer selectivity was high across all trap types we evaluated and was lowest for footsnares (88%) and highest for foot‐encapsulating traps (99%). Mortality from trap‐related injury in restraining traps we tested was very rare for furbearers (0.5% of animals). In over 230,000 trap‐nights across a 21‐year period, no individuals of a threatened or endangered species were captured. Of 9,589 total captures, 11% were non‐furbearers, of which 83% were alive upon trap inspection; nearly all non‐furbearer mortalities were birds, rabbits, or squirrels. Approximately 2% of total captures were feral or free‐ranging dogs (Canis familiaris), of which none died or were deemed in need of veterinary care by either our technicians or the owners (if located). Similarly, 3% of total captures were feral or free‐ranging cats (Felis catus); 2 were dead, and although locating potential owners was often impossible, none of the remaining cats were deemed in need of veterinary care by technicians or owners. Our results show that furbearer selectivity was high for all trap types evaluated, mortality or significant injury was very rare for domestic (or feral) animals, and the most potential for mortality or injury of non‐furbearers was with smaller animals, a majority of which were squirrels and rabbits. Our results suggest that injury scores for a given trap‐species combination are unlikely to vary significantly across states or regions of the United States, provided similar methods are employed. Our data also suggest that taxonomic affiliation and body‐size groupings are correlated with injury scores, presumably through morphological, physiological, or behavioral adaptations or responses that influence injury potential during restraint; higher injury scores in foot‐restraining trap types were more likely in smaller or more dexterous species, whereas injury scores were typically lowest for the felids we evaluated. For some species (e.g., American badger [Taxidea taxus], bobcat [Lynx rufus]), most restraining traps we tested met BMP standards, whereas few restraining traps we tested met standards for other species (e.g., muskrat [Ondatra zibethicus], striped skunk [Mephitis mephitis]). Comparison of our results with survey information collected during 2015 on trap use in the United States indicates that approximately 75% of all target furbearers harvested were taken in BMP‐compliant traps, with another 10% taken in traps yet to be tested on that species. Future trap testing and development should focus on commonly used traps not yet tested on a species, species for which few passing traps currently pass BMP criteria, and trap models and modifications most likely to minimize trap injuries given a species morphology, physiology, and behavior. Outreach efforts should focus on general BMP awareness, discouraging use of traps that fail BMP standards for a given species, and public outreach on trapping. Restraining (and other) traps have evolved substantially in recent decades and offer numerous benefits to individuals, conservation, and society. However, continuing to address societal concerns remains a critical component of modern regulated trapping and furbearer management. Published trapping BMPs are regularly updated online and may include additional approved restraining and killing traps that were evaluated as part of testing by Canada. We will periodically update the trap performance tables and figures we presented and make them available online at the Association of Fish and Wildlife Agencies website

    Toxicokinetics of mercury in blood compartments and hair of fish-fed sled dogs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding mercury (Hg) distribution in blood and the importance of hair as an excretory pathway is critical for evaluating risk from long term dietary Hg exposure. The major objective of this study was to characterize changes in total Hg concentrations in specific blood compartments and hair over time due to long term piscivory.</p> <p>Methods</p> <p>Eight sled dogs (<it>Canis lupus familiaris</it>) were fed either a fish and kibble diet (n = 4), or a fish-free control diet (n = 4) for 12 weeks. Concentrations of Hg were monitored throughout the exposure period, and for 10 weeks post exposure, until Hg concentrations in all blood compartments of one of the exposed dogs dropped below detection limit. Additionally, foreleg hair was sampled during acclimation and weeks 0 and 12.</p> <p>Results</p> <p>Hg was detected primarily in whole blood and packed cells, although it was sporadically detected at low concentrations in plasma and serum in two of the fish fed dogs. Dogs ingested an estimated average of 13.4 ± 0.58 Όg Hg per kg body weight per day. Hg was detectable in whole blood and packed cells within a week of exposure. Detected concentrations continued to rise until plateauing at approximately 3-6 weeks of exposure at a mean of 9.2 ± 1.97 ng/g (ppb) in whole blood. Hg concentration decreased post exposure following 1st order elimination. The mean half-life (t<sub>1/2</sub>) in whole blood for Hg was 7 weeks. Mean Hg in hair for the fish-fed dogs at week 12 was 540 ± 111 ppb and was significantly greater (about 7-fold) than the Hg hair concentration for the control dogs. The hair to blood ratio for Hg in fish-fed dogs was 59.0 ± 7.6:1.</p> <p>Conclusions</p> <p>This study found the sled dog model to be an effective method for investigating and characterizing blood Hg distribution (whole blood, serum, plasma, packed cells) and toxicokinetics associated with a piscivorous diet, especially for Hg-exposed fur bearing mammals (such as polar bears). Although hair excretion and hair to blood Hg ratios were not similar to human concentrations and ratios, the sled dog toxicokinetics of Hg in blood, was more similar to that of humans than traditional laboratory animals (such as the rat).</p
    corecore