10,698 research outputs found

    Magnetic compressibility and ion-temperature-gradient-driven microinstabilities in magnetically confined plasmas

    Full text link
    The electromagnetic theory of the strongly driven ion-temperature-gradient (ITG) instability in magnetically confined toroidal plasmas is developed. Stabilizing and destabilizing effects are identified, and a critical βe\beta_{e} (the ratio of the electron to magnetic pressure) for stabilization of the toroidal branch of the mode is calculated for magnetic equilibria independent of the coordinate along the magnetic field. Its scaling is βe∼LTe/R,\beta_{e}\sim L_{Te}/R, where LTeL_{Te} is the characteristic electron temperature gradient length, and RR the major radius of the torus. We conjecture that a fast particle population can cause a similar stabilization due to its contribution to the equilibrium pressure gradient. For sheared equilibria, the boundary of marginal stability of the electromagnetic correction to the electrostatic mode is also given. For a general magnetic equilibrium, we find a critical length (for electromagnetic stabilization) of the extent of the unfavourable curvature along the magnetic field. This is a decreasing function of the local magnetic shear

    High-m Kink/Tearing Modes in Cylindrical Geometry

    Full text link
    The global ideal kink equation, for cylindrical geometry and zero beta, is simplified in the high poloidal mode number limit and used to determine the tearing stability parameter, Δ′\Delta^\prime. In the presence of a steep monotonic current gradient, Δ′\Delta^\prime becomes a function of a parameter, σ0\sigma_0, characterising the ratio of the maximum current gradient to magnetic shear, and xsx_s, characterising the separation of the resonant surface from the maximum of the current gradient. In equilibria containing a current "spike", so that there is a non-monotonic current profile, Δ′\Delta^\prime also depends on two parameters: κ\kappa, related to the ratio of the curvature of the current density at its maximum to the magnetic shear, and xsx_s, which now represents the separation of the resonance from the point of maximum current density. The relation of our results to earlier studies of tearing modes and to recent gyro-kinetic calculations of current driven instabilities, is discussed, together with potential implications for the stability of the tokamak pedestal.Comment: To appear in Plasma Physics and Controlled Fusio
    • …
    corecore