1,638 research outputs found
Using monoclonal antibodies to prevent mucosal transmission of epidemic infectious diseases.
Passive immunization with antibodies has been shown to prevent a wide variety of diseases. Recent advances in monoclonal antibody technology are enabling the development of new methods for passive immunization of mucosal surfaces. Human monoclonal antibodies, produced rapidly, inexpensively, and in large quantities, may help prevent respiratory, diarrheal, and sexually transmitted diseases on a public health scale
Controlled Compositional Disorder in Er3+:Y2SiO5 Provides a Wide-Bandwidth Spectral Hole Burning Material at 1.5mum
The subgigahertz spectral bandwidth of the lowest energy 1.5mum Er3+ I15/24--\u3eI13/24 optical transition in Er3+:Y2SiO5 has been increased to ˜22GHz by intentionally introducing compositional disorder through codoping with Eu3+ impurity ions. This illustrates a general bandwidth control technique for spectral hole burning device applications including spatial-spectral holography and quantum computing. Coherence measurements by stimulated photon echoes demonstrated that the increased disorder does not perturb the dynamical properties of the Er3+ transition and, thus, gives the desired bandwidth enhancement without penalty in other properties. The echo measurements and model analysis also show that phonon-driven spin flips of Er3+ ions in the ground state are responsible for the spectral diffusion that was observed for the optical transition. These results collectively give a better understanding of both the nature of disorder and of the ion-ion interactions in doped materials, and they also enable the high bandwidths required for signal processing and memory applications at 1.5mum based on spectral hole burning
Optical Decoherence and Spectral Diffusion at 1.5 μM in Er3+: Y2 SiO5 versus Magnetic Field, Temperature, and Er3+ Concentration
The mechanisms and effects of spectral diffusion for optical transitions of paramagnetic ions have been explored using the inhomogeneously broadened 1536 nm I15∕24→I13∕24 transition in Er3+:Y2SiO5. Using photon echo spectroscopy, spectral diffusion was measured by observing the evolution of the effective coherence lifetimes over time scales from 1μs to 20 ms for magnetic-field strengths from 0.3 to 6.0 T, temperatures from 1.6 to 6.5 K, and nominal Er3+ concentrations of 0.0015%, 0.005%, and 0.02%. To understand the effect of spectral diffusion on material decoherence for different environmental conditions and material compositions, data and models were compared to identify spectral diffusion mechanisms and microscopic spin dynamics. Observations were successfully modeled by Er3+−Er3+ magnetic dipole interactions and Er3+ electron spin flips driven by the one-phonon direct process. At temperatures of 4.2 K and higher, spectral diffusion due to Y89 nuclear spin flips was also observed. The success in describing our extensive experimental results using simple models provides an important capability for exploring larger parameter spaces, accelerating the design and optimization of materials for spatial-spectral holography, and spectral hole-burning devices. The broad insight into spectral diffusion mechanisms and dynamics is applicable to other paramagnetic materials, such as those containing Yb3+ or Nd3+
Magnetic G Tensors for the I 15/2 4 and I 13/2 4 States of Er3+: Y2 Si O5
We present the complete Zeeman g tensors for the lowest-energy I15∕24 and I13∕24 states of Er3+ doped into Y2SiO5 for both crystallographic sites deduced from orientation-dependent optical Zeeman spectroscopy over three orthogonal crystal planes. From these data, principal axes of the g tensors were determined for each crystallographic site. Along axes with maximum values, the effective g factors are 14.65 (site 1) and 15.46 (site 2) for the ground state, and 12.97 (site 1) and 13.77 (site 2) for the excited state. To minimize optical decoherence and spectral diffusion in device applications and high resolution spectroscopy, special directions for applying an external magnetic field have been found for each site, for which the ground- and excited-state g factors are equal. Among those directions, choices are presented that also maximize the ground-state splittings for all four magnetically inequivalent sites, thus optimizing the prospects for freezing out electron spin fluctuations and reducing decoherence and spectral diffusion significantly
Spectroscopy and Dynamics of Er3+: Y2 Si O5 at 1.5 μM
We present the results of detailed site-selective spectroscopy performed on the I15∕24↔I13∕24 transition of Er3+:Y2SiO5 at 1.5μm. New determinations of the I13∕24 and I15∕24 crystal-field-level structure for the two crystallographically inequivalent Er3+ sites have been made. The fluorescence dynamics of the metastable I13∕24:Y1 excited state was investigated, showing exponential decays for Er3+ at both crystallographic sites with fluorescence lifetimes of 11.4ms for site 1 and 9.2ms for site 2. Exceptionally sharp inhomogeneous absorption lines of 180, 390, and 510MHz were observed in 0.0015% Er3+:Y2SiO5, 0.005% Er3+:Y2SiO5, and 0.02% Er3+:Y2SiO5 crystals, respectively. The g-values for the lowest energy I15∕24 (Z1) and I13∕24 (Y1) doublets were measured to be 5.5 and 4.6 for site 1 and 15.0 and 12.9 for site 2 when the magnetic field was oriented along the crystal’s D1 axis
Material Optimization of Er3+Y2SiO5 at 1.5 μm for Optical Processing, Memory, and Laser Frequency Stabilization Applications
Spatial-spectral holography using spectral hole burning materials is a powerful technique for performing real-time, wide-bandwidth information storage and signal processing. For operation in the important 1.5 μm communication band, the material Er3+:Y2SiO5 enables applications such as laser frequency stabilization, all-optical correlators, analog signal processing, and data storage. Site-selective absorption and emission spectroscopy identified spectral hole burning transitions and excited state T1 lifetimes in the 1.5 μm spectral region. The effects of crystal temperature, Er3+-dopant concentration, magnetic field strength, and crystal orientation on spectral diffusion were explored using stimulated photon echo spectroscopy, which is the “prototype” interaction mechanism for device applications. The performance of Er3+:Y2SiO5 and related Er3+ materials has been dramatically enhanced by reducing the effect of spectral diffusion on the coherence lifetime T2 through fundamental material design coupled with the application of an external magnetic field oriented along specific directions. A preferred magnetic field orientation that maximized T2 by minimizing the effects of spectral diffusion was determined using the results of angle-dependent Zeeman spectroscopy. The observed linewidth broadening due to spectral diffusion was successfully modeled by considering the effect of one-phonon (direct) processes on Er3+ - Er3+ interactions. The reported studies improved our understanding of Er3+ materials, explored the range of conditions and material parameters required to optimize performance for specific applications, and enabled measurement of the narrowest optical resonance ever observed in a solid—with a homogeneous linewidth of 73 Hz. With the optimized materials and operating conditions, photon echoes were observed up to temperatures of 5 K, enabling 0.5 GHz bandwidth optical signal processing at 4.2 K and providing the possibility for operation with a closed-cycle cryocooler
Effects of Magnetic Field Orientation on Optical Decoherence in Er3+: Y2 SiO5
The influence of the anisotropic Zeeman effect on optical decoherence was studied for the 1.54 μm telecom transition in Er3+:Y2SiO5 using photon echo spectroscopy as a function of applied magnetic field orientation and strength. The decoherence strongly correlates with the Zeeman energy splittings described by the ground- and excited-state g factor variations for all inequivalent Er3+ sites, with the observed decoherence times arising from the combined effects of the magnetic dipole-dipole coupling strength and the ground- and excited-state spin-flip rates, along with the natural lifetime of the upper level. The decoherence time was maximized along a preferred magnetic field orientation that minimized the effects of spectral diffusion and that enabled the measurement of an exceptionally narrow optical resonance in a solid—demonstrating a homogeneous linewidth as narrow as 73 Hz
Precision measurement of electronic ion-ion interactions between neighboring Eu3+ optical centers
We report measurements of discrete excitation-induced frequency shifts on the 7F0→5D0 transition of the Eu+ center in La:Lu:EuCl3·6D2O resulting from the optical excitation of neighboring Eu3+ ions. Shifts of up to 46.081±0.005 MHz were observed. The magnitude of the interaction between neighboring ions was found to be significantly larger than expected from the electric dipole-dipole mechanism often observed in rare earth systems. We show that a large network of interacting and individually addressable centers can be created by lightly doping crystals otherwise stoichiometric in the optically active rare earth ion, and that this network could be used to implement a quantum processor with more than ten qubits
Rare-Earth-Doped Materials with Application to Optical Signal Processing, Quantum Information Science, and Medical Imaging Technology
Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient “spectral hole” recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process
- …