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ABSTRACT 

Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped 
single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with 
persistent or transient “spectral hole” recording properties for applications including high-bandwidth optical signal 
processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and 
information science including the goal of storage and recall of single photons; and medical imaging technology for the 
700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex 
spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a 
capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of 
tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. 
Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 
different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser 
frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral 
hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 
material system are presented and discussed for medical imaging applications. Finally, a new application of these 
materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and 
theoretical modeling of the process. 
 

Keywords: UOT, hole burning, quantum memory, rare earth, medical imaging, laser frequency stabilization, laser phase 
noise, signal processing 
 

1. INTRODUCTION  
Rare earth materials have special properties making them ideal for resonant laser-excited optical processing devices. 
This paper focuses on new applications made practical by exploiting the detailed nature of the optical transition 
lineshapes at low temperature. These optical transitions provide the basis for optical technology in which light 
dynamically interacts with a resonant optical material. Applications span from classical signal processing to laser 
frequency stabilization to quantum memories to filters for ultrasound optical tomography (UOT). We briefly review a 
number of these technologies and present experimental measurements on 0.1% Tm3+:LiNbO3, demonstrating material 
properties well-suited for high-performance optical filtering in new medical imaging technologies. We also review a new 
application of these materials as dynamic optical filters for laser phase noise suppression that we have recently reported.1 
Experimental measurements of this laser spectrum narrowing effect are presented and discussed along with numerical 
modeling of the results. These models are also used to demonstrate how this novel effect may be simply implemented to 
produce sub-megahertz high contrast optical filters with very sharp spectral edges. 

*cone@montana.edu; phone 1406 994 6175; fax 1 406 994 4452; http://www.physics.montana.edu/faculty/cone/ 

Invited Paper

Advances in Photonics of Quantum Computing, Memory, and Communication V,
edited by Zameer Ul Hasan, Philip R. Hemmer, Hwang Lee, Charles M. Santori, Proc. of SPIE

Vol. 8272, 82720E · © 2012 SPIE · CCC code: 0277-786X/12/$18 · doi: 10.1117/12.909154

Proc. of SPIE Vol. 8272  82720E-1

Downloaded from SPIE Digital Library on 22 Mar 2012 to 153.90.194.52. Terms of Use:  http://spiedl.org/terms



2. BASIC ASPECTS OF RARE EARTH IONS IN SOLIDS 
Only transition elements form stable compounds with partially filled electron shells that are required for localized 
electronic transitions and sharp lines. These include transition metals (3dN, 4dN, or 5dN), rare earths (also known as 
lanthanides) (4fN), and actinides (5fN). The partially filled 4fN shells of rare earth ions give useful lines spread across the 
wavelength range from the far-infrared to the vacuum-ultraviolet. 

The rare-earth ions are set apart from other transition elements. The unfilled shell of 4fN electrons remains highly 
shielded within the closed 5s25p6 shells of the rare earth ion, so that the optical transitions maintain much of an atomic-
like character even in a solid. This strong shielding of the 4fN electrons is in sharp contrast to transition metal d 
electrons, which are involved in chemical bonding, are thus strongly affected by the host lattice, and may show 
significant delocalization and mixing with electronic states of other ions in the lattice.  

The actinide 5f electron configurations provide intermediate cases; stronger coupling of the 5f electrons to the lattice 
makes their properties more dependent on the specific host material. Most actinides are radioactive. 

The optical linewidths of rare earth ions in crystals vary over a wide range depending on the temperature and other 
factors. Transition line shapes are described by an inhomogeneous distribution of transition frequencies having an 
inhomogeneous width Γinh, with each indistinguishable group or “packet” of ions having a homogeneous width Γh. This 
line structure is illustrated schematically in Fig. 1. 

 

Figure 1. Illustration of the inhomogeneous linewidth Γinh for a resonant optical material and the homogeneous linewidth Γh 
for individual groups of ions. Values of Γh as low as 75 Hz have been observed for optical transitions using two-pulse 
photon echo measurements.2-4 Modification of the equilibrium ground state population by absorption of light, either from a 
very monochromatic laser or from a complex optical waveform can produce spectral hole burning. 

At room temperature, the lines are homogeneously broadened by phonons with typical homogeneous linewidths Γh = 60 
– 1000 GHz (2 – 30 cm-1); stated in terms of wavelength, λ/Δλ is on the order of 104. As the homogeneous contribution 
to the linewidth is reduced by cooling, the linewidths cross over to inhomogeneous broadening in the neighborhood of 
77 K. Crystal (or glass) strain and inhomogeneity become increasingly evident at lower temperatures. Typical values of 
the inhomogeneous linewidth Γinh lie in the range of 1 - 30 GHz or more depending on ion concentration and crystal 
strain; for isolated ions, concentrations typically need to be less than 0.1% molar. When significant structural disorder is 
present, Γinh can increase to greater than 100 GHz. 

The narrowest homogeneous linewidths occur for transitions from the lowest component of the ground multiplet to the 
lowest component of excited multiplets. At low temperatures, in the range 1.5 to 10 K, obtained by cryocoolers or by 
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liquid helium, and for those “lowest-to-lowest” transitions, homogeneous linewidths Γh as narrow as tens of Hz to a few 
kHz can occur in favorable cases when these widths are lifetime-limited or nearly so. The narrowest observed values that 
we are aware of are Γh ∼ 75 – 100 Hz observed in several crystal systems in our laboratory: Er3+:Y2SiO5 and 
Eu3+:Y2SiO5.2-4 

3. MECHANISMS FOR HOMOGENEOUS LINEWIDTHS OF RARE-EARTH IONS IN 
INSULATORS 

At room temperature, the leading contribution to the homogeneous linewidth Γh comes from thermal phonons. Below 
about 4 – 10 K, thermal phonon contributions are usually negligible, but to achieve this one must generally avoid 
systems with multiplets having small crystal field level splittings that can be bridged by low energy phonons. The 
phonon contribution to sharp lines is typically greater than the inhomogeneous linewidth even well below 77 K. 

Lifetime broadening makes another important contribution. The lifetime can be limited by radiative decay, non-radiative 
decay by spontaneous phonon emission, or other processes such as upconversion or cross-relaxation transitions 
involving multiple neighboring ions. In a number of cases of interest, metastable levels can be found that have a 
population lifetime T1 ≥ 1 – 10 ms. A range of non-radiative decay times can occur, with many on the nanosecond or 
picosecond scale, though in some cases they can reach the millisecond level. 

Coupling of the optical ion with fluctuating magnetic fields in its environment also contributes to the line broadening. 
Both nuclear and electronic spin fluctuations can contribute to these fields. If paramagnetic ions are among the dopants 
or undesirable impurities, their electronic magnetic moments couple strongly but are more easily frozen out with an 
applied magetic field. In some favorable cases, like the Er3+:Y2SiO5 and Eu3+:Y2SiO5 cited above, one may minimize and 
almost completely avoid magnetic interactions by composition or dilution. In other cases, an appropriate applied 
magnetic field can dramatically suppress these effects. 

Finally there may be optically-induced changes in ion-ion coupling caused by having a neighbor of the optical ions 
excited by the laser light or relaxing from an excited state during the process of interest. This has been called variously 
‘Instantaneous Spectral Diffusion’ (since it induces frequency shifts), ‘excitation-induced dephasing,’ ‘laser-induced 
inhomogeneous broadening,’ and ‘demolition’ of coherence. 

4. COMPOSITIONAL TUNING OF RARE EARTH OPTICAL TRANSITIONS 
An important consequence of the special properties of rare earth 4fN – 4fN optical transitions is the similarity of the 
transition wavelengths regardless of the chemical composition of the optically-inert host material. Nevertheless, there are 
differences in the transition wavelengths from one material to another. Those differences are typically discrete, though 
we have shown together with Scientific Materials Corporation that transition wavelengths may be adjusted continuously 
by using mixed crystal compositions.5-7 

A specific illustration6 was the development of a 944.1 nm Nd3+ garnet laser for remote laser sensing of water vapor. The 
Nd3+ 4F3/2 → 4I9/2 transition occurs near 946 nm for the classic laser material Nd3+:YAG (yttrium aluminum garnet – 
Y3Al5O12). By changing details of the crystal structure the wavelength was tuned to the desired value. Various mixtures 
were found to tune the Nd3+ doped mixed scandium and yttrium garnets over the 937-946 nm region. Several 
compositions produced the desired 944.1 nm, allowing one to choose the one easiest to grow while optimizing the 
highest level of crystal perfection and other important properties. This 944 nm laser when frequency-doubled is 
coincidentally nearly optimum for transmission in ocean water. 

5. SPECTRAL HOLE BURNING AND SPECTRAL RECORDING AND PROCESSING 
APPLICATIONS 

Spectral hole burning (SHB) occurs when a very monochromatic laser interacts with a homogeneous “packet” of ions in 
these inhomogeneously broadened materials. The excited ions are temporarily or permanently removed from the 
absorbing population, modifying the transition frequency distribution, leaving a “hole;” this can occur by two-level 
saturation, optical pumping of hyperfine levels, or other physical changes. SHB materials have many capabilities that are 
just beginning to be appreciated by larger audiences, and those capabilities enable an array of optoelectronic devices. 
SHB materials can be used in combination with conventional holography to create the new powerful concepts of 
spectral-spatial holography (S2); S2, also called time- and space-domain holography, offers real time optical signal 
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processing at bandwidths exceeding those of electronics. Spectral holes can dramatically affect optical dispersion, 
leading to slow light effects. In the context of ultrasound optical tomography (UOT), the narrow spectral holes provide 
the needed spectral filter for signal discrimination.  

The properties of spectral holes in rare earth doped materials vary widely and can be tailored by choice of ion and host 
material and by design of material concentration and applied fields. In some materials, persistent holes are observed 
lasting from weeks to indefinitely or as long as the low temperatures are maintained. In other materials, transient holes, 
ideal for other applications, have hole lifetimes determined by radiative lifetimes and range from a few ns to 10 ms. 

In summary, typical measured values of Γinh range from a few GHz to 100’s of GHz. The homogeneous linewidth Γh can 
be as low as ∼ 75 – 100 Hz.2-4 In many cases we have observed the ratio to be Γinh / Γh ∼ 105 – 108.2,8-13 One, therefore, 
can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Spatial-
spectral holography, also called “S2,” “4-d” holography, or time- and space-domain holography is a synthesis of spectral 
hole burning, spatial holography, and Fourier optics. This S2 holography is capable of optical signal processing, range-
Doppler radar signal processing, and spectrum analysis at high bandwidths well into the GHz regime and beyond the 
bandwidth of related electronic signal processing. It is capable of generating true-time delay for phased arrays and 
general correlation and convolution of optical pulse trains at multi-GHz bandwidths. To support those developments, a 
wide range of rare earth doped materials has been designed, developed, and studied in detail. Many of the same materials 
have been proven to be excellent materials for quantum information and slow light physics; examples include quantum 
memory for photons and demonstrations of very slow light. 

An example of one of the most promising known systems for enabling a wide range of SHB applications is the resonant 
optical material Er3+-doped yttrium oxyorthosilicate (Er3+:Y2SiO5) that we introduced more than a decade ago.3,4,14-16 
This material system exhibits a number of important properties including unusually long coherence lifetimes, a nearly 
oscillator-strength-limited excited state liftetime, and operation in the 1.5 μm telecommunication band where extensive 
low-cost optical hardware has been developed and commercially tested by the telecommunications industry. These 
Er3+:Y2SiO5 materials have been successfully employed in a wide range of demonstrations that include wideband signal 
processing,17 all-optical correlators,18,19 radio-frequency spectral analysis,20 laser frequency stabilization,21,22 
electromagnetically induced transparency (EIT),23 ultraslow light propagation,24 coherent single photon storage and 
retrieval,25 and dynamic spectral filtering.1 The Er3+:Y2SiO5 system has also been considered and studied for its use in 
quantum memory applications.26-28 

6. RARE EARTH MATERIALS FOR QUANTUM MEMORIES 
We have given several reviews of rare earth materials for quantum memory and related applications.1,9,28-33 Examples of 
materials we have designed, characterized, and optimized for these applications are Er3+:Y2SiO5 at 1.5 μm,3,4,10,14-16,34 
Er3+-doped fibers and glasses,35-37 Tm3+:LiNbO3 at 794 nm,12,13 Er3+:LiNbO3 at 1532 nm,11 and Eu3+:Y2SiO5 at 
580 nm,2,8,38 and Er3+:Eu3+:Y2SiO5 where the Eu3+ doping served to increase the processing bandwidth to ∼ 10 GHz at 
1.5 μm.39 The doped LiNbO3 materials are well-suited to waveguide implementations of quantum memory.40  

In quantum memories, SHB can be used to prepare an ideal “artificial” lineshape for the system. The long coherence 
times are also important for quantum memories, along with the ability to devise Λ-systems of energy levels and to 
manipulate the states with electric and magnetic fields.28,41 

7. SPECTRAL HOLES AS FREQUENCY REFERENCES 
Ultra-narrow frequency references for laser frequency stabilization are another application of sharp spectral holes.21,22,42-

50 With Γh ∼ 75 – 100 Hz, milli-Hz laser frequency stability is practical. In a number of our demonstrations, the 
frequency-stabilization system based on SHB has demonstrated the interesting and unusual capability of providing 
stabilization even in cases where narrow lasers are not available to initially produce the ultra-narrow spectral holes. 
Stabilization to spectral holes was initially developed to provide ideal sources for S2 applications with excellent 
rejection of environmental perturbations due to vibration. Now manipulation and interrogation of rare earth ions used for 
quantum memories or in other quantum information contexts can require similarly stable lasers. More recently the group 
of Rosenband et al. at NIST demonstrated that stabilization to spectral holes in Eu3+:Y2SiO5 provides high performance 
Laser Local Oscillators for atomic clocks with environmental isolation parameters that are lower and hence better than 
those for optimized Fabry-Perot cavities.51 
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Frequency stabilization in this application is carried out using locking concepts involving frequency modulation 
spectroscopy and phase sensitive detection. Those techniques make sensitive locking with a precision of ∼ 1 part in 105 
of the homogeneous width. 

We have reported locking to both persistent and transient spectral holes, demonstrating stabilities up to a precision of a 
part in 1013 over milliseconds and locking to a variety of wavelengths: Tm3+:CaF2:D- at 798 nm, Tm3+:YAG at 793 nm, 
Er3+:Y2SiO5 at 1536 nm, Er3+:KTP at 1537 nm, Er3+:CaF2:D- at 1523 nm, and Er3+:LiYF4 at 1530 nm.21,22,42-50 Numerical 
modeling was also reported.47 We have given several reviews of that work. Recently Rosenband’s group at NIST 
demonstrated laser frequency stabilization to spectral holes in Eu3+:Y2SiO5 at 580 nm to 6 x 10-16.51 

8. LASER LINE NARROWING WITH AN SHB “DYNAMIC OPTICAL FILTER” 
A new application for SHB materials that we have recently demonstrated is for dynamic optical filtering to suppress 
laser phase noise and significantly “narrow” the laser linewidth.1 Lasers with very narrow spectral linewidths still exhibit 
a broad spectrum of phase noise limited by the relatively slow roll-off of the natural Lorentzian lineshape, even in the 
ideal Schawlow-Townes quantum limit. When such a laser enters a resonant SHB crystal, a spectral hole with a shape 
comparable to the noise power spectrum of the laser is initially burned in the absorption line. However, we have found 
that as the laser propagates through the resonant SHB medium, the broad phase noise of the laser is suppressed due to 
the nonlinear saturation of the optical transition for different spectral components of the laser. Because this frequency-
dependent saturation depends strongly on the power spectral density of the laser at each frequency, the medium is much 
more transparent at the center of the laser’s spectrum compared to other frequencies where the weaker noise components 
may be present. Consequently, the strongest spectral component of the laser is transmitted while the noise components 
are partially absorbed. The spectral narrowing effect of this process also causes the spectral hole width to decrease as the 
light continues to propagate through the material, providing progressively greater filtering. As a result, this process is 
unlike other filtering methods in that it is fundamentally a spectral shaping effect due to propagation in a high optical 
density material with an inhomogeneously broadened absorption line. 

This SHB dynamic self-filtering has a number of unique capabilities that are unmatched by any other technique. 
1) While active laser stabilization typically only suppresses laser noise over a few megahertz at best, limited by the 
stable electronic bandwidth of PID feedback servos, SHB filtering suppresses laser noise over the entire inhomogeneous 
bandwidth of the material, up to hundreds of gigahertz. 2) Unlike fixed spectral filters, SHB filtering automatically 
matches both the frequency and spectral width of the input laser source so that it naturally follows slow changes in the 
laser without need for active control. 3) Very high noise suppression may be easily achieved with a high optical density 
material. Using 0.02% Er3+:Y2SiO5 as an example, the peak absorption coefficient of 50 cm-1 allows a 5 mm thick crystal 
to provide more than 100 dB of noise suppression. 4) Under the appropriate choice of conditions, the strong nonlinearity 
of the hole burning process and the progressive narrowing effect of the spectral holes can be exploited to provide nearly 
100% transmission through the material at the peak of the laser’s power spectral density while still providing large 
suppression of laser noise at nearby frequencies. 5) This filtering effect is ultimately only limited by the homogeneous 
linewidth of the SHB material, which can be exceptionally sharp, as narrow as 73 Hz in Er3+:Y2SiO5. Moreover, we have 
demonstrated that the strong nonlinearity of the propagation process can result in filtering well below the homogeneous 
linewidth of the material. 

An example of the SHB dynamic optical filtering effect is presented in Fig. 2 for 0.02% Er3+:Y2SiO5 at 1536 nm with an 
applied magnetic field of 0.5 T along the crystal’s D1 axis and a temperature of 1.6 K. For this data, the laser noise 
spectrum was measured using standard delayed self-heterodyne techniques with a 24 μs optical delay line.52,53 The 
dotted line in Fig. 2 shows the measured self-heterodyne power spectrum of an external cavity diode laser (ECDL) with 
a 200 kHz optical linewidth before passing through the crystal and the solid line shows the spectrum of the light 
transmitted through the crystal. The minimum noise level of -58 dB observed in these measurements was due to the 
electronic noise floor of the photodetector. From these results, we observe that the transmitted spectrum is significantly 
narrowed with only a small reduction of peak optical power due primarily to reflection losses from the cryostat and other 
optics. For this demonstration, we specifically chose conditions where we expect a relatively broad effective 
homogeneous linewidth of 3.2 MHz full-width at half maximum (FWHM), limited by spectral diffusion.15 A crystal with 
an optical density (OD) of 3.1 was used for this demonstration to show that the strong nonlinearity of the absorption with 
propagation can lead to substantial suppression of the Lorentzian tails of the laser spectrum even in a case where the 
homogeneous linewidth is much broader than the laser spectrum. 
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Figure 2. Example of delayed self-heterodyne measurement of the laser narrowing effect for a 200 kHz laser 
before (dotted line) and after (solid line) passing through a 0.02% Er3+:Y2SiO5 crystal with OD = 3.1 and an 
estimated spectral-diffusion-limited homogeneous linewidth of 3.2 MHz. A numerical simulation of the predicted 
SHB narrowing effect for these conditions is shown by the dashed line. 

We have also carried out detailed numerical modeling of the SHB narrowing effect to understand the process and 
optimize the effect for different conditions. The dashed line shows a theoretical simulation of the transmitted spectrum 
predicted for the experimental conditions in Fig. 2, giving excellent agreement with the measured spectrum. Using this 
model, we have calculated expected spectral hole filter profiles that could be produced for applications such as medical 
imaging, as discussed in the next section. These results are shown in Fig. 3, where we have simulated the transmission 
spectrum of a 1.4 mm thick crystal of 0.02% Er3+:Y2SiO5 at 1536 nm for conditions of an applied field of 5.0 T along the 
D1 axis and a temperature of 1.8 K where the homogeneous linewidth is only 3 kHz and all other model 

 
Figure 3. Numerical simulation of the transmission spectra of SHB filters with OD = 3 and holes prepared by a 
200 kHz linewidth laser with (solid line) and without (dashed line) SHB pre-filtering, demonstrating how this 
method may be used to create high-contrast, low-loss optical filters with very sharp spectral edges. 
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parameters are accurately known. These calculations show the expected material transmission spectrum when a laser 
with a natural linewidth of 200 kHz is used to prepare the spectral hole and when the laser is pre-filtered by a separate 
SHB material, or even by passing through a different spot in the same crystal before burning the desired spectral hole 
filter. The non-Lorentzian power spectrum of the filtered laser produces a dramatically narrower spectral hole with very 
sharp edges while still maintaining a high transmission as compared to the hole burned by the unfiltered laser, resulting 
in ideal properties for medical imaging. 

A demonstration of how active laser frequency stabilization may be combined with this passive filtering technique is 
presented in Fig. 4. For these measurements, we frequency stabilized the 200 kHz ECDL to a high-finesse Fabry-Perot 
cavity with a linewidth of 100 kHz. The dotted line in Fig. 4 shows the delayed self-heterodyne measurement of the free-
running laser and the dashed line shows the frequency stabilized laser spectrum. These results are typical of active 
feedback control methods, where low-frequency noise is strongly suppressed resulting in a sharp peak at the optical 
carrier frequency while noise at frequencies beyond the bandwidth of the feedback PID servo electronics are slightly 
increased due to effects such as electronic noise and phase delays in the feedback correction. The solid line in Fig. 3 
shows the measured spectrum of the stabilized laser after passing through a resonant 0.1% Er3+:LiNbO3 SHB crystal 
with OD = 2.5 for an applied field of 5.0 T along the crystal’s c-axis and at 1.8 K. The sharp central peak of the power 
spectrum produced by the active stabilization burns a very sharp spectral hole that is very effective at eliminating the 
remaining laser noise. Consequently, the active stabilization and passive filtering processes perfectly complement each 
other to produce an exceptionally sharp laser power spectrum. 

 
Figure 4. Example showing how active laser stabilization and passive SHB spectral filtering may be combined to 
produce an exceptionally sharp laser power spectrum. The dotted line is a delayed self-heterodyne measurement of 
a free-running 200 kHz laser, the dashed line is the spectrum after frequency stabilizing the laser to a Fabry-Perot 
reference cavity, exhibiting typical noise sidebands at frequencies beyond the electronic servo bandwidth, and the 
solid line is the stabilized laser light after passing through a 0.1% Er3+:LiNbO3 SHB crystal with OD = 2.5, 
demonstrating dramatic suppression of noise over all frequencies. 

Together, these results demonstrate how SHB may be used as dynamic optical filters for laser sources and provide a 
number of unique properties beyond the capabilities of other filtering or active stabilization methods. 

9. ULTRASONIC-OPTICAL TISSUE IMAGING EXAMPLE 
One current material used for published reports of ultrasonic-optical tissue imaging (UOT) is Pr3+:Y2SiO5, which was 
chosen on account of strong optical absorption, kHz homogeneous linewidths, long hole lifetime, and the ability to burn 
very deep holes that burn down to near perfect transparency. This material was initially developed at MSU working 
together with Scientific Materials Corporation in Bozeman, MT.54 The Y2SiO5 host is a transparent material available in 
large boules from Scientific Materials; it has very high optical quality and is a laser grade material. Fabricated and 
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polished parts can be supplied by Scientific Materials. Application to UOT has been carried out by the groups of Wang, 
Hemmer, Kröll, and others.55-63 

10. Tm3+:LiNbO3 FOR UOT TISSUE IMAGING WITH LASER LINE NARROWING “DYNAMIC 
OPTICAL FILTER” 

To attain the combination of properties required for UOT tissue imaging applications, we propose a new potential 
filtering material, Tm3+:LiNbO3. By combining this material with the SHB laser self-filtering technique discussed 
earlier, ideal optical filters may be produced that are well suited for UOT. Our detailed studies have demonstrated that 
this material has very strong absorption, narrow homogeneous linewidths, and long-lived persistent spectral holes.12,13 

An example of a persistent spectral hole at 794 nm in 0.1% Tm3+:LiNbO3 is shown in Fig. 5 with a small applied field of 
115 G along the crystal’s c-axis and a temperature of 1.8 K. The persistent hole burning is enabled by the nuclear 
hyperfine structure due to the spin 1/2 nucleus of 169Tm. Population redistribution among the nuclear hyperfine states 
results in a single pair of antiholes, as seen in Fig. 5, although no sidehole structure is observed in the spectrum, unlike 
other system that display persistent hyperfine hole burning. The typical persistent spectral hole shown in Fig. 5 
corresponds to a change in absorption of ~8 cm-1, corresponding to a change in material transmission of 30 dB over an 
8.6 mm thick sample for these conditions. This hole spectrum was measured 2.7 seconds after the end of the burn pulse, 
showing little change in depth over this timescale. To determine the spectral hole lifetime for these conditions, we 
measured the decay of the spectral hole area over time, as plotted in the bottom panel of Fig. 5. We observe an 
exponential decay with a hole lifetime of 36 seconds for these conditions. 

 
Figure 5. Top: Example of a deep persistent spectral hole at 794 nm in 0.1% Tm3+:LiNbO3 at 1.8 K with an 
applied magnetic field of 115 G along the crystal’s c-axis. The observed hole width was limited by the laser 
linewidth. Bottom: Measured spectral hole decay for these conditions revealing a hole lifetime of 36 seconds. 

Proc. of SPIE Vol. 8272  82720E-8

Downloaded from SPIE Digital Library on 22 Mar 2012 to 153.90.194.52. Terms of Use:  http://spiedl.org/terms



While we readily observed Δα = 8 cm-1 deep holes in this material, we also burned deeper saturated spectral holes to 
determine the maximum filter contrast and minimum residual absorption that can be achieved for this particular position 
on the inhomogeneous lineshape. Under the same conditions as the data in Fig. 5, we were able to burn persistent 
spectral holes as deep as 11.5 cm-1. Since the absorption coefficient at this frequency is 13 cm-1, we estimate that the 
residual absorption at the peak of the hole is 1.5 cm-1. For a crystal 6 mm thick, this would correspond to a 30 dB filter 
contrast for a spectral hole with 4 dB of residual absorption loss through the crystal. These numbers nearly meet the 
application requirement of UOT, and based on our recent analysis of the optical transition structure,13 we expect that the 
residual absorption can be significantly reduced by selecting a different position on the absorption line optimized for this 
application. 

For the spectral hole shown in Fig. 5, the ~1 MHz linewidth of the diode laser limited the spectral resolution of the 
measurements to ~2 MHz. This is consistent with the observed hole width of ~1.6 MHz, suggesting that the intrinsic 
homogeneous linewidth of the material is < 1 MHz for these conditions. To investigate this, we measured stimulated 
photon echo decays in this material over different timescales to determine the effective homogeneous linewidth. The 
maximum timescale of these measurements was 2 ms, experimentally limited by the frequency jitter of the diode laser. 
An example stimulated photon echo decay at 794.267 nm for a t23 delay of 2 ms is shown in Fig. 6 with an applied field 
of 138 G along the c-axis and a temperature of 1.7 K. The exponential echo decay indicates a homogeneous linewidth of 
16 kHz under these conditions. No change in linewidth was observed over the measured timescales of 1 μs to 2 ms. 
Measurements as a function of temperature indicate that the homogeneous linewidth remains < 400 kHz for temperatures 
of up to 6 K.13 However, the persistent spectral hole lifetimes decrease with temperature to 0.5 seconds at 5.0 K for a 
field of 345 G,12 although increasing the magnetic field strength may further increase the lifetime at these temperatures. 

 

Figure 6. Measured stimulated photon echo decay curve at 794 nm in 0.1% Tm3+:LiNbO3 for 1.7 K with an 
applied magnetic field of 138 G along the crystal’s c-axis indicating an effective homogeneous linewidth of 
16 kHz over timescales of 2 ms. 

These results suggest that Tm3+:LiNbO3 is one of the most promising materials to provide SHB filtering for applications 
such as UOT. Furthermore, since both the spatial and spectral laser beam profiles have a significant impact on the 
performance of SHB filters, employing SHB in the material to pre-filter the laser may further improve both the 
efficiency and contrast of the spectral filtering process. In our projected system, the demonstrated capability of SHB 
laser narrowing by an SHB dynamic optical filter is ideal to pre-filter the UOT laser. A portion of the laser can then be 
frequency-shifted to prepare an improved filter to be used for the UOT detection itself. Since the Lorentzian tails of a 
laser’s natural power spectrum only roll-off at 20 dB/decade, the narrower non-Lorentzian light spectrum produced by 
SHB pre-filtering is ideally suited for creating the sharp high-contrast spectral holes required for efficient filtering as 
well as providing a more spectrally concentrated optical signal for high-sensitivity UOT signal detection. 
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11. SUMMARY AND CONCLUSIONS 
Here and in previous reviews we have described and tabulated the known properties of a range of spectral hole burning 
materials for applications to quantum memories, optical signal processing, laser frequency stabilization, dynamic 
spectral filters, and ultrasound optical tomography.1,9,28-33 A wide selection of materials optimized for different properties 
is required to enable this entire range of applications. 

The feasibility and eventual practicality of the applications and devices listed above depend on special resonant optical 
materials, among which rare-earth ions doped into dielectric crystals at cryogenic temperatures are one of the most 
promising candidates. Continued material development and understanding of the physics underlying the materials, thus 
needs to be given equal importance to the development of device concepts. 

For UOT and related applications, the new SHB-based dynamic spectral filtering technique described here allows phase 
noise and side modes of the laser to be suppressed to a fraction of the achievable spectral hole width, potentially leading 
to both improved lasers for UOT and improved SHB-based filter preparation for signal detection. 
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