37,354 research outputs found

    Structure Functions are not Parton Probabilities

    Get PDF
    We explain why contrary to common belief, the deep inelastic scattering structure functions are not related to parton probabilities in the target.Comment: 4 pages. Invited talk presented during the `International Light-Cone Workshop', Trento, ECT, September 3-11, 2001. Updated Report-Number

    GRANGER CAUSALITY AND U.S. CROP AND LIVESTOCK PRICES

    Get PDF
    Agricultural economists have recently been attracted to procedures suggested by Granger and others which allow observed data to reveal causal relationships. Results of this study indicate that "causality" tests can be ambiguous in identifying behavioral relationships between agricultural price variables. Caution is suggested when using such procedures for model choice.Demand and Price Analysis,

    Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements

    Full text link
    The Sivers transverse single spin asymmetry (TSSA) is calculated and compared at different scales using the TMD evolution equations applied to previously existing extractions. We apply the Collins-Soper-Sterman (CSS) formalism, using the version recently developed by Collins. Our calculations rely on the universality properties of TMD-functions that follow from the TMD-factorization theorem. Accordingly, the non-perturbative input is fixed by earlier experimental measurements, including both polarized semi-inclusive deep inelastic scattering (SIDIS) and unpolarized Drell-Yan (DY) scattering. It is shown that recent COMPASS measurements are consistent with the suppression prescribed by TMD evolution.Comment: 4 pages, 2 figures. Version published in Physical Review Letter

    Post-Impact Thermal Evolution of Porous Planetesimals

    Full text link
    Impacts between planetesimals have largely been ruled out as a heat source in the early Solar System, by calculations that show them to be an inefficient heat source and unlikely to cause global heating. However, the long-term, localized thermal effects of impacts on planetesimals have never been fully quantified. Here, we simulate a range of impact scenarios between planetesimals to determine the post-impact thermal histories of the parent bodies, and hence the importance of impact heating in the thermal evolution of planetesimals. We find on a local scale that heating material to petrologic type 6 is achievable for a range of impact velocities and initial porosities, and impact melting is possible in porous material at a velocity of > 4 km/s. Burial of heated impactor material beneath the impact crater is common, insulating that material and allowing the parent body to retain the heat for extended periods (~ millions of years). Cooling rates at 773 K are typically 1 - 1000 K/Ma, matching a wide range of measurements of metallographic cooling rates from chondritic materials. While the heating presented here is localized to the impact site, multiple impacts over the lifetime of a parent body are likely to have occurred. Moreover, as most meteorite samples are on the centimeter to meter scale, the localized effects of impact heating cannot be ignored.Comment: 38 pages, 9 figures, Revised for Geochimica et Cosmochimica Acta (Sorry, they do not accept LaTeX

    Parametrized post-Newtonian virial theorem

    Full text link
    Using the parametrized post-Newtonian equations of hydrodynamics, we derive the tensor form of the parametrized post-Newtonian virial theorem.Comment: 10 pages, submitted to CQ

    Wiring Viterbi decoders (splitting deBruijn graphs)

    Get PDF
    A new Viterbi decoder, capable of decoding convolutional codes with constraint lengths up to 15, is under development for the Deep Space Network (DSN). A key feature of this decoder is a two-level partitioning of the Viterbi state diagram into identical subgraphs. The larger subgraphs correspond to circuit boards, while the smaller subgraphs correspond to Very Large Scale Integration (VLSI) chips. The full decoder is built from identical boards, which in turn are built from identical chips. The resulting system is modular and hierarchical. The decoder is easy to implement, test, and repair because it uses a single VLSI chip design and a single board design. The partitioning is completely general in the sense that an appropriate number of boards or chips may be wired together to implement a Viterbi decoder of any size greater than or equal to the size of the module

    Superposition as memory: unlocking quantum automatic complexity

    Full text link
    Imagine a lock with two states, "locked" and "unlocked", which may be manipulated using two operations, called 0 and 1. Moreover, the only way to (with certainty) unlock using four operations is to do them in the sequence 0011, i.e., 0n1n0^n1^n where n=2n=2. In this scenario one might think that the lock needs to be in certain further states after each operation, so that there is some memory of what has been done so far. Here we show that this memory can be entirely encoded in superpositions of the two basic states "locked" and "unlocked", where, as dictated by quantum mechanics, the operations are given by unitary matrices. Moreover, we show using the Jordan--Schur lemma that a similar lock is not possible for n=60n=60. We define the semi-classical quantum automatic complexity Qs(x)Q_{s}(x) of a word xx as the infimum in lexicographic order of those pairs of nonnegative integers (n,q)(n,q) such that there is a subgroup GG of the projective unitary group PU(n)(n) with ∣GâˆŁâ‰€q|G|\le q and with U0,U1∈GU_0,U_1\in G such that, in terms of a standard basis {ek}\{e_k\} and with Uz=∏kUz(k)U_z=\prod_k U_{z(k)}, we have Uxe1=e2U_x e_1=e_2 and Uye1≠e2U_y e_1 \ne e_2 for all y≠xy\ne x with ∣y∣=∣x∣|y|=|x|. We show that QsQ_s is unbounded and not constant for strings of a given length. In particular, Qs(0212)≀(2,12)<(3,1)≀Qs(060160) Q_{s}(0^21^2)\le (2,12) < (3,1) \le Q_{s}(0^{60}1^{60}) and Qs(0120)≀(2,121)Q_s(0^{120})\le (2,121).Comment: Lecture Notes in Computer Science, UCNC (Unconventional Computation and Natural Computation) 201

    The physics of twisted magnetic tubes rising in a stratified medium: two dimensional results

    Get PDF
    The physics of a twisted magnetic flux tube rising in a stratified medium is studied using a numerical MHD code. The problem considered is fully compressible (no Boussinesq approximation), includes ohmic resistivity, and is two dimensional, i.e., there is no variation of the variables in the direction of the tube axis. We study a high plasma beta case with small ratio of radius to external pressure scaleheight. The results obtained can therefore be of relevance to understand the transport of magnetic flux across the solar convection zone.Comment: To be published in ApJ, Vol. 492, Jan 10th, 1998; 25 pages, 16 figures. NEW VERSION: THE PREVIOUS ONE DIDN'T PRINT CORRECTLY. The style file overrulehere.sty is include
    • 

    corecore