19,502 research outputs found
A system for aerodynamic design and analysis of supersonic aircraft. Part 3: Computer program description
The computer program documentation for the design and analysis of supersonic configurations is presented. Schematics and block diagrams of the major program structure, together with subroutine descriptions for each module are included
Study of low frequency hydromagnetic waves using ATS-1 data
Low frequency oscillations of the magnetic field at ATS-1 were analyzed for the 25 month data interval, Dec., 1966 through 1968. Irregular oscillations and those associated with magnetic storms were excluded from the analysis. Of the 222 events identified, 170 were found to be oscillating predominantly transverse to the background magnetic field. The oscillations were observed to occur most frequently in the early afternoon hours. They also seemed to occur more frequently during Dec., Jan., and Feb. than at any other time of the year. During a given event, the frequency was fairly constant. The event duration varied between a minimum of 10 min. and a maximum of 14 hrs and 26 min. During a given event the amplitude varied
Aerodynamic design and analysis system for supersonic aircraft. Part 2: User's manual
An integrated system of computer programs for supersonic configurations is described. An explanation of system usage, the input definitions, and example output are included. For Part 1, see N75-18185; for Part 3, see N75-18186
A computational system for aerodynamic design and analysis of supersonic aircraft. Part 2: User's manual
An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. This user's manual contains a description of the system, an explanation of its usage, the input definition, and example output
A computational system for aerodynamic design and analysis of supersonic aircraft. Part 3: Computer program description
For abstract, see Vol. 1
Universal Properties of Two-Dimensional Boson Droplets
We consider a system of N nonrelativistic bosons in two dimensions,
interacting weakly via a short-range attractive potential. We show that for N
large, but below some critical value, the properties of the N-boson bound state
are universal. In particular, the ratio of the binding energies of (N+1)- and
N-boson systems, B_{N+1}/B_N, approaches a finite limit, approximately 8.567,
at large N. We also confirm previous results that the three-body system has
exactly two bound states. We find for the ground state B_3^(0) = 16.522688(1)
B_2 and for the excited state B_3^(1) = 1.2704091(1) B_2.Comment: 4 pages, 2 figures, final versio
Linear independence of Gamma values in positive characteristic
We investigate the arithmetic nature of special values of Thakur's function
field Gamma function at rational points. Our main result is that all linear
independence relations over the field of algebraic functions are consequences
of the known relations of Anderson and Thakur arising from the functional
equations of the Gamma function.Comment: 51 page
No supercritical supercurvature mode conjecture in one-bubble open inflation
In the path integral approach to false vacuum decay with the effect of
gravity, there is an unsolved problem, called the negative mode problem. We
show that the appearance of a supercritical supercurvature mode in the
one-bubble open inflation scenario is equivalent to the existence of a negative
mode around the Euclidean bounce solution. Supercritical supercurvature modes
are those whose mode functions diverge exponentially for large spatial radius
on the time constant hypersurface of the open universe. Then we propose a
conjecture that there should be ``no supercritical supercurvature mode''. For a
class of models that contains a wide variety of tunneling potentials, this
conjecture is shown to be correct.Comment: 11 pages, 3 postscript figures, tarred, gzipped. submitted to Phys.
Rev. D1
A study of the effects of environmental and ablator performance uncertainties on heat shielding requirements for hyperbolic entry vehicles. Volume 2 - Summary of calculations
Calculated ablative quantities for nylon phenolic heat shielding materials of hyperbolic reentry vehicle
Results of a 24-inch Hybrid Motor Performance Uncertainty Analysis
The subscale (11 and 24-inch) hybrid motors at the Marshall Space Flight Center (MSFC) have been used as versatile and cost effective testbeds for developing new technology. Comparisons between motor configuration, ignition systems, feed systems, fuel formulations, and nozzle materials have been carried out without detailed consideration as to haw "good" the motor performance data were. For the 250,000 lb/thrust motor developed by the Hybrid Propulsion Demonstration Program consortium, this shortcoming is particularly risky because motor performance will likely be used as put of a set of downselect criteria to choose between competing ignition and feed systems under development. This analysis directly addresses that shortcoming by applying uncertainty analysis techniques to the experimental determination of the characteristic velocity, theoretical characteristic velocity, and characteristic velocity efficiency for a 24-inch motor firing. With the adoption of fuel-lined headends, flow restriction, and aft mixing chambers, state of the an 24-inch hybrid motors have become very efficient However, impossibly high combustion efficiencies (some computed as high as 108%) have been measured in some tests with 11-inch motors. This analysis has given new insight into explaining how these efficiencies were measured to be so high, and into which experimental measurements contribute the most to the overall uncertainty
- …