252 research outputs found

    Modelling of gas permeation through ceramic coatings produced by thermal spraying

    No full text
    An analytical model has been developed for simulation of gas permeation through thermal spray coatings, and for prediction of the permeability. The model is based on a geometrical representation of the coating microstructure. This involves thin splats, with limited inter-splat bridging, and microcracks within the splats. Important variables include the thickness (smallest dimension) of the inter-splat pores and intra-splat microcracks. Uniform values of these parameters are used in the model. Predicted permeabilities are compared with experimental data obtained using plasma-sprayed zirconia coatings, both in the as-sprayed state and after heat treatments sufficient to generate significant microstructural changes via sintering effects. In general, good agreement is obtained and it is concluded that the model constitutes a useful tool for exploration of gas permeation characteristics in coatings or layers produced by thermal sprayin

    The Effect of a High Thermal Gradient on Sintering and Stiffening in the Top Coat of a Thermal Barrier Coating (TBC) System

    No full text
    Superalloy substrates coated with plasma sprayed CoNiCrAlY bond coats and yttria-stabilized zirconia top coats have been subjected to a high heat flux in a controlled atmosphere chamber. The sintering exhibited by the top coat under these conditions has been studied and compared with the behavior observed during isothermal heating, both when attached to the substrate and when detached. Sintering has been characterized by (a) microstructural examinations, (b) dilatometry, in both in-plane and through-thickness directions, and (c) stiffness measurements, using both cantilever bending and nanoindentation. A numerical heat flow model has been used to explore the stress state under isothermal and thermal gradient conditions. Sintering proceeds faster at higher temperature, but is retarded by the presence of tensile stresses (from differential thermal expansion between coating and substrate) within the top coat. Sintering occurs preferentially near the free surface of the top coat under gradient conditions, not only because of the higher temperature, but also because the in-plane stress is more compressive in that region

    Modelling of transient liquid phase bonding in binary systems — A new parametric study

    Get PDF
    An established mathematical model, describing the rate at which transient liquid phase bonding (TLP bonding) progresses in binary alloy systems, is subjected to careful scrutiny. It is shown that the process can be characterised using just two dimensionless parameters. An advantage of such dimensionless characterisation is demonstrated by analysis of the solution for solidification of semi-infinite systems. It is known that analytical formulae for the rate at which the liquid region solidifies are valid only for certain restricted cases. This is investigated by numerical modelling, and the requirements for the formulae to be applicable are rationalised. Maps presented here can be used to determine whether the semi-infinite solution would provide an acceptable approximation for any given system. Information is also presented concerning optimal combinations of phase diagram characteristics, diffusivities and system dimensions required for rapid TLP solidification, which can be used to identify the best melting point depressant (MPD) materials to use for particular TLP requirements. The analysis reveals that, as a consequence of their higher solubilities, elements forming substitutional solutes in the parent plates may often allow faster TLP solidification than those forming interstitial solutes, despite the fact that the latter group normally exhibits much higher diffusivities

    Influence of the composition and viscosity of volcanic ashes on their adhesion within gas turbine aeroengines

    Get PDF
    AbstractThis paper presents experimental investigations into adhesion characteristics of four types of (Icelandic) volcanic ash (VA). Firstly, powder (∌5–50 Όm) was injected into a modified vacuum plasma spray set-up and the fractional mass of particles that adhered to a substrate was measured. Secondly, large (∌6 mm), dense pellets of each ash were heated and projected at a substrate, with their impact response monitored via high speed photography. The four ashes fall into two groups of two, one with high Si content (>20%) and the other containing less Si, but higher levels of lower valence cations (such as Ca, Mg & Fe). The glass transition temperatures were all relatively low (∌650–750 °C), favouring particle adhesion on surfaces in gas turbines. All of the ashes tended to adhere, especially with higher gas temperatures and impingement velocities. However, this tendency was much greater for the two ashes with high levels of the lower valence cations. The high speed photography confirmed that this was due to these two ashes having much lower viscosities (at high strain rates). This behaviour could not have been predicted solely on the basis of Tg or glass content values. However, these cations act as “network-modifiers” in silica-based glasses, effecting sharp reductions in melt viscosity, so inferences about the danger of specific VA may be possible from simple compositional analysis. In any event, it's clearly important for VA being generated during any particular eruption to be sampled (presumably by drones) and analysed, rather than relying solely on remote measurement of atmospheric ash levels

    Properties and Performance of High-Purity Thermal Barrier Coatings

    No full text
    It has been found that reducing the level of impurity oxides (particularly SiO2 and Al2O3) in 7YSZ, from about 0.2 wt% to below 0.1 wt% raises the sintering resistance and the phase stability of plasma-sprayed coatings. The implications for the usage of these coatings at elevated temperatures are examined. It is concluded that using relatively high-purity powder of this type is likely to confer substantial benefits in terms of the thermomechanical stability of the coatings under service conditions

    Effect of Heat Treatment on Pore Architecture and Associated Property Charges in Plasma Sprayed TBCs

    No full text
    Plasma sprayed TBCs exhibit many interlamellar pores, voids and microcracks. These microstructural features are primarily responsible for the low global stiffnesses and the low thermal conductivities commonly exhibited by such coatings. The pore architecture thus has an important influence on such thermophysical properties. In the present work, the effect of heat treatment (at temperatures up to 1400C, for times of up to 100 hours) and coating purity on the pore architecture in detached YSZ top coats has been characterised by Mercury Intrusion Porosimetry (MIP) and BJH Analysis. While the overall porosity level (measured by densitometry) remained relatively unaffected (at around 10-12%) after the heat treatments concerned, there were substantial changes in the pore size distribution and the (inter-connected) specific surface area, although these changes occurred less rapidly with coatings produced using high purity powders. Fine pores (<~50 nm) rapidly disappeared, while the specific surface area dropped dramatically, particularly at high treatment temperatures (>~1300C). These changes are thought to be associated with improved inter-splat bonding and increased contact area, leading to disappearance of much of the very fine inter-splat porosity. These microstructural changes are reflected in sharply increased stiffness and thermal conductivity. Measured thermal conductivity data are compared with predictions from a recently-developed analytical model [1], using the deduced inter-splat contact area results as input parameters. Good agreement is obtained, suggesting that the model captures the main geometrical effects and the porosity architecture measurements reflect the most significant microstructural changes. REF.1. Golosnoy, IO, Tsipas, SA and Clyne, TW, An Analytical Model For Simulation Of Heat Flow In Plasma Sprayed Thermal Barrier Coating, J. Thermal Spray Techn., 14 (2005) 205-214

    A steady-state Bi-substrate technique for measurement of the thermal conductivity of ceramic coatings

    No full text
    This paper presents a steady-state, bi-substrate technique for measurement of the through-thickness thermal conductivity of ceramic coatings, with a range of specimen thickness and porosity content. The technique is based on establishing unidirectional steady-state heat flow through the sample, sandwiched between a pair of (metallic) substrates with known thermal properties. Comparison between the heat fluxes passing through the two substrates allows a check to be made about the accuracy of the assumption of unidirectional heat flow. The interfacial conductances must be known and these can be estimated by testing samples of different thickness. Measured conductivities are likely to be more accurate if the interfacial conductance is relatively high. This is assisted by the introduction of a thin interfacial layer of a viscous, thermally conductive compound, or thermal pads of some sort, and by maintaining a suitable pressure across the setup. However, if such compounds (pastes) are used, then care must be taken to ensure that it does not enter the specimen via surface-connected pores, since this could significantly affect the measured conductivity. The reliability of the technique has been confirmed by testing fused silica samples of known thermal conductivity. It has also been applied to sprayed zirconia and plasma electrolytic oxide (PEO) alumina coatings. The values obtained were 1.05±0.10 W m?1 K?1 and 1.63±0.35 W m?1 K?1, respectively

    Sintering Kinetics of Plasma-Sprayed Zirconia TBCs

    No full text
    A model of the sintering exhibited by EB-PVD TBCs, based on principles of free energy minimization, was recently published by Hutchinson et al. In the current paper, this approach is applied to sintering of plasma-sprayed TBCs and comparisons are made with experimental results. Predictions of through-thickness shrinkage and changing pore surface area are compared with experimental data obtained by dilatometry and BET analysis respectively. The sensitivity of the predictions to initial pore architecture and material properties are assessed. The model can be used to predict the evolution of contact area between overlying splats. This is in turn related to the through-thickness thermal conductivity, using a previously-developed analytical model

    Linear Contraction Behavior of Low-Carbon, Low-Alloy Steels During and After Solidification Using Real-Time Measurements

    Get PDF
    A technique for measuring the linear contraction during and after solidification of low-alloy steel was developed and used for examination of two commercial low-carbon and low-alloy steel grades. The effects of several experimental parameters on the contraction were studied. The solidification contraction behavior was described using the concept of rigidity in a solidifying alloy, evolution of the solid fraction, and the microstructure development during solidification. A correlation between the linear contraction properties in the solidification range and the hot crack susceptibility was proposed and used for the estimation of hot cracking susceptibility for two studied alloys and verified with the real casting practice. The technique allows estimation of the contraction coefficient of commercial steels in a wide range of temperatures and could be helpful for computer simulation and process optimization during continuous casting. © 2013 The Minerals, Metals & Materials Society and ASM International
    • 

    corecore