4 research outputs found

    Visualizing an Allosteric Intermediate Using CuAAC Stabilization of an NMR Mixed Labeled Dimer

    Get PDF
    Homodimers are the most abundant type of enzyme in cells, and as such, they represent the most elemental system for studying the phenomenon of allostery. In these systems, in which the allosteric features are manifest by the effect of the first binding event on a similar event at the second site, the most informative state is the asymmetric singly bound (lig1) form, yet it tends to be thermodynamically elusive. Here we obtain milligram quantities of lig1 of the allosteric homodimer, chorismate mutase, in the form of a mixed isotopically labeled dimer stabilized by Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) between the subunits. Below, we outline several critical steps required to generate high yields of both types of unnatural amino acid-containing proteins and overcome multiple pitfalls intrinsic to CuAAC to obtain high yields of a highly purified, fully intact, active mixed labeled dimer, which provides the first glimpse of the lig1 intermediate. These data not only will make possible NMR-based investigations of allostery envisioned by us but also should facilitate other structural applications in which specific linkage of proteins is helpful

    Discovering the Microbial Enzymes Driving Drug Toxicity with Activity-Based Protein Profiling

    Get PDF
    It is increasingly clear that interindividual variability in human gut microbial composition contributes to differential drug responses. For example, gastrointestinal (GI) toxicity is not observed in all patients treated with the anticancer drug irinotecan, and it has been suggested that this variability is a result of differences in the types and levels of gut bacterial β-glucuronidases (GUS). GUS enzymes promote drug toxicity by hydrolyzing the inactive drug-glucuronide conjugate back to the active drug, which damages the GI epithelium. Proteomics-based identification of the exact GUS enzymes responsible for drug reactivation from the complexity of the human microbiota has not been accomplished, however. Here, we discover the specific bacterial GUS enzymes that generate SN-38, the active and toxic metabolite of irinotecan, from human fecal samples using a unique activity-based protein profiling (ABPP) platform. We identify and quantify gut bacterial GUS enzymes from human feces with an ABPP-enabled proteomics pipeline and then integrate this information with ex vivo kinetics to pinpoint the specific GUS enzymes responsible for SN-38 reactivation. Furthermore, the same approach also reveals the molecular basis for differential gut bacterial GUS inhibition observed between human fecal samples. Taken together, this work provides an unprecedented technical and bioinformatics pipeline to discover the microbial enzymes responsible for specific reactions from the complexity of human feces. Identifying such microbial enzymes may lead to precision biomarkers and novel drug targets to advance the promise of personalized medicine.Bio-organic SynthesisMedical Biochemistr

    Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract

    Get PDF
    Emerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial β-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.Bio-organic Synthesi
    corecore