5 research outputs found
Corrigendum to “Xylazine is an agonist at kappa opioid receptors and exhibits sex-specific responses to opioid antagonism” [Addiction Neuroscience, Volume 11, June 2024, 100155]
Corrigendum to “Xylazine is an agonist at kappa opioid receptors and exhibits sex-specific responses to opioid antagonism
Xylazine is an agonist at kappa opioid receptors and exhibits sex-specific responses to opioid antagonism
Xylazine is in the unregulated drug supply at increasing rates, usually combined with fentanyl, necessitating understanding of its pharmacology. Despite commentary from politicians, and public health officials, it is unknown how xylazine impacts naloxone efficacy, and. few studies have examined it alone. Here, we examine the impact of xylazine alone and in combination with fentanyl on several behaviors in mice. Surprisingly, naloxone precipitates withdrawal from xylazine and fentanyl/xylazine coadministration, with enhanced sensitivity in females. Further, xylazine is a full agonist at kappa opioid receptors, a potential mechanism for its naloxone sensitivity. Finally, we demonstrate surprising effects of xylazine to kappa opioid antagonism, which are relevant for public health considerations. These data address an ongoing health crisis and will help inform critical policy and healthcare decisions
Xylazine is an agonist at kappa opioid receptors and exhibits sex-specific responses to opioid antagonism
Xylazine is in the unregulated drug supply at increasing rates, usually combined with fentanyl, necessitating understanding of its pharmacology. Despite commentary from politicians, and public health officials, it is unknown how xylazine impacts naloxone efficacy, and. few studies have examined it alone. Here, we examine the impact of xylazine alone and in combination with fentanyl on several behaviors in mice. Surprisingly, naloxone precipitates withdrawal from xylazine and fentanyl/xylazine coadministration, with enhanced sensitivity in females. Further, xylazine is a full agonist at kappa opioid receptors, a potential mechanism for its naloxone sensitivity. Finally, we demonstrate surprising effects of xylazine to kappa opioid antagonism, which are relevant for public health considerations. These data address an ongoing health crisis and will help inform critical policy and healthcare decisions. One-sentence summary: We present surprising new insights into xylazine and fentanyl pharmacology with immediate implications for clinical practice and frontline public health
In vivo targeting of the growth hormone receptor (GHR) Box1 sequence demonstrates that the GHR does not signal exclusively through JAK2
GH is generally believed to signal exclusively through Janus tyrosine kinases (JAK), particularly JAK2, leading to activation of signal transducers and activators of transcription (STAT), ERK and phosphatidylinositol 3-kinase pathways, resulting in transcriptional regulation of target genes. Here we report the creation of targeted knock-in mice wherein the Box1 motif required for JAK2 activation by the GH receptor (GHR) has been disabled by four Pro/Ala mutations. These mice are unable to activate hepatic JAK2, STAT3, STAT5, or Akt in response to GH injection but can activate Src and ERK1/2. Their phenotype is identical to that of the GHR–/– mouse, emphasizing the key role of JAK2 in postnatal growth and the minimization of obesity in older males. In particular, they show dysregulation of the IGF-I/IGF-binding protein axis at transcript and protein levels and decreased bone length. Because no gross phenotypic differences were evident between GHR–/– and Box1 mutants, we undertook transcript profiling in liver from 4-month-old males. We compared their transcript profiles with our 391-GHR truncated mice, which activate JAK2, ERK1/2, and STAT3 in response to GH but not STAT5a/b. This has allowed us for the first time to identify in vivo Src/ERK-regulated transcripts, JAK2-regulated transcripts, and those regulated by the distal part of the GHR, particularly by STAT5