70 research outputs found

    Intermittent Calf Compression Delays the Onset of Presyncope in Young Healthy Individuals

    Get PDF
    Orthostatic fluid shifts reduce the effective circulating volume and thus contribute to syncope susceptibility. Recurrent syncope has a devastating impact on quality of life and is challenging to manage effectively. To blunt orthostatic fluid shifts, static calf compression garments are often prescribed to patients with syncope, but have questionable efficacy. Intermittent calf compression, which mimics the skeletal muscle pump to minimize pooling and filtration, holds promise for the management of syncope. We aimed to evaluate the effectiveness of intermittent calf compression for increasing orthostatic tolerance (OT; time to presyncope). We conducted a randomized single-blind crossover study, in which participants (n = 21) underwent three graded 60° head-up-tilt tests to presyncope with combined lower body negative pressure on separate days. Low frequency intermittent calf compression (ICLF; 4 s on and 11 s off) at 0–30 and 0–60 mmHg was applied during two tests and compared to a placebo condition where the garment was fitted, but no compression applied. We measured continuous leg circumference changes (strain gauge plethysmography), cardiovascular responses (finger plethysmography; Finometer Pro), end tidal gases (nasal cannula), and cerebral blood flow velocity (CBFv, transcranial Doppler). The 0–60 mmHg ICLF increased OT (33 ± 2.2 min) compared to both placebo (26 ± 2.4 min; p < 0.001) and 0–30 mmHg ICLF (25 ± 2.7 min; p < 0.001). Throughout testing 0–60 mmHg ICLF reduced orthostatic fluid shifts compared to both placebo and 0–30 mmHg ICLF (p < 0.001), with an associated improvement in stroke volume (p < 0.001), allowing blood pressure to be maintained at a reduced heart rate (p < 0.001). In addition, CBFv was higher with 0–60 mmHg ICLF than 0–30 mmHg ICLF and placebo (p < 0.001). Intermittent calf compression is a promising novel intervention for the management of orthostatic intolerance, which may provide affected individuals renewed independence and improved quality of life

    Evaluating the Efficacy of an Active Compression Brace on Orthostatic Cardiovascular Responses

    Get PDF
    Orthostatic intolerance, one of the principle causes of syncope, can occur secondary to concomitant venous pooling and enhanced capillary filtration. We aimed to evaluate a prototype portable calf active compression brace (ACB) designed to improve orthostatic haemodynamic control. Fourteen healthy volunteers participated in a randomized, placebo controlled, cross-over, double-blind study. Testing consisted of head-upright tilting and walking on a treadmill conducted on two consecutive days with a pair of ACBs wrapped around both calves. The ACB was actuated on one test day, but not on the other (placebo). Wearability, comfort, and ambulatory use of the ACB were assessed using questionnaires. The average calf pressure exerted by the ACB was 46.3±2.2 mmHg and the actuation pressure was 20.7±1.7 mmHg. When considering the differences between ACB actuation and placebo during tilt after supine rest there were trends for a larger stroke volume (+5.20±2.34%, p = 0.05) and lower heart rate (-5.12±2.41%, p = 0.06) with ACB actuation, with no effect on systolic arterial pressure (+4.86±3.41%, p = 0.18). The decrease in stroke volume after ten minutes of tilting was positively correlated with the height:calf circumference (r = 0.464; p = 0.029; n = 22; both conditions combined). The increase in heart rate after ten minutes of tilting was negatively correlated with the height:calf circumference (r = -0.485; p = 0.022; n = 22; both conditions combined) and was positively correlated with the average calf circumference (r = 0.539; p = 0.009; n = 22; both conditions combined). Participants reported good ACB wearability and comfort during ambulatory use. These data verify that the ACB increased stroke volume during tilting in healthy controls. Active calf compression garments may be a viable option for the management of orthostatic intolerance

    Cardiovascular Responses to Orthostasis and Their Association With Falls in Older Adults

    Get PDF
    Background Orthostatic hypotension (OH) refers to a marked decline in blood pressure when upright. OH has a high incidence and prevalence in older adults and represents a potential intrinsic risk factor for falls in these individuals. Previous studies have not included more recent definitions for blood pressure responses to orthostasis, including initial, delayed, and recovery blood pressure responses. Furthermore, there is little research examining the relationships between cerebrovascular functioning and falling risk. Therefore, we aimed to: (i) test the association between different blood pressure responses to orthostatic stress and retrospective falling history and; (ii) test the association between cerebrovascular responses to orthostatic stress and falling history. Methods We tested 59 elderly residents in long term care facilities who underwent a passive seated orthostatic stress test. Beat-to-beat blood pressure and cerebral blood flow velocity (CBFV) responses were assessed throughout testing. Risk factors for falls and falling history were collected from facility records. Cardiovascular responses to orthostasis were compared between retrospective fallers (≥1 fall in the previous year) and non-fallers. Results Retrospective fallers had larger delayed declines in systolic arterial pressure (SAP) compared to non-fallers (p  = 0.015). Fallers also showed poorer early (2 min) and late (15 min) recovery of SAP. Fallers had a greater decline in systolic CBFV. Conclusions Older adults with a positive falling history have impaired orthostatic control of blood pressure and CBFV. With better identification and understanding of orthostatic blood pressure impairments earlier intervention and management can be implemented, potentially reducing the associated risk of morbidity and mortality. Future studies should utilize the updated OH definitions using beat-to-beat technology, rather than conventional methods that may offer less accurate detection

    Diagnostic criteria for initial orthostatic hypotension:a narrative review

    Get PDF
    Abnormalities in orthostatic blood pressure changes upon active standing are associated with morbidity, mortality, and reduced quality of life. However, over the last decade, several population-based cohort studies have reported a remarkably high prevalence (between 25 and 70%) of initial orthostatic hypotension (IOH) among elderly individuals. This has raised the question as to whether the orthostatic blood pressure patterns in these community-dwelling elderly should truly be considered as pathological. If not, redefining of the systolic cutoff values for IOH (i.e., a value ≥ 40 mmHg in systolic blood pressure in the first 15 s after standing up) might be necessary to differ between normal aging and true pathology. Therefore, in this narrative review, we provide a critical analysis of the current reference values for the changes in systolic BP in the first 60 s after standing up and discuss how these values should be applied to large population studies. We will address factors that influence the magnitude of the systolic blood pressure changes following active standing and the importance of standardization of the stand-up test, which is a prerequisite for quantitative, between-subject comparisons of the postural hemodynamic response

    Pubertal Hormonal Changes and the Autonomic Nervous System: Potential Role in Pediatric Orthostatic Intolerance

    Get PDF
    Puberty is initiated by hormonal changes in the adolescent body that trigger physical and behavioral changes to reach adult maturation. As these changes occur, some adolescents experience concerning pubertal symptoms that are associated with dysfunction of the autonomic nervous system (ANS). Vasovagal syncope (VVS) and Postural Orthostatic Tachycardia Syndrome (POTS) are common disorders of the ANS associated with puberty that are related to orthostatic intolerance and share similar symptoms. Compared to young males, young females have decreased orthostatic tolerance and a higher incidence of VVS and POTS. As puberty is linked to changes in specific sex and non-sex hormones, and hormonal therapy sometimes improves orthostatic symptoms in female VVS patients, it is possible that pubertal hormones play a role in the increased susceptibility of young females to autonomic dysfunction. The purpose of this paper is to review the key hormonal changes associated with female puberty, their effects on the ANS, and their potential role in predisposing some adolescent females to cardiovascular autonomic dysfunctions such as VVS and POTS. Increases in pubertal hormones such as estrogen, thyroid hormones, growth hormone, insulin, and insulin-like growth factor-1 promote vasodilatation and decrease blood volume. This may be exacerbated by higher levels of progesterone, which suppresses catecholamine secretion and sympathetic outflow. Abnormal heart rate increases in POTS patients may be exacerbated by pubertal increases in leptin, insulin, and thyroid hormones acting to increase sympathetic nervous system activity and/or catecholamine levels. Given the coincidental timing of female pubertal hormone surges and adolescent onset of VVS and POTS in young women, coupled with the known roles of these hormones in modulating cardiovascular homeostasis, it is likely that female pubertal hormones play a role in predisposing females to VVS and POTS during puberty. Further research is necessary to confirm the effects of female pubertal hormones on autonomic function, and their role in pubertal autonomic disorders such as VVS and POTS, in order to inform the treatment and management of these debilitating disorders

    Relationships between Orthostatic Hypotension, Frailty, Falling and Mortality in Elderly Care Home Residents

    Get PDF
    Background: Orthostatic hypotension (OH; profound falls in blood pressure when upright) is a common deficit that increases in incidence with age, and may be associated with falling risk. Deficit accumulation results in frailty, regarded as enhanced vulnerability to adverse outcomes. We aimed to evaluate the relationships between OH, frailty, falling and mortality in elderly care home residents. Methods: From the Minimum Data Set (MDS) document, a frailty index (FI-MDS) was generated from a list of 58 deficits, ranging from 0 (no deficits) to 1.0 (58 deficits). OH was evaluated from beat-to-beat blood pressure and heart rate (finger plethysmography) collected during a 15-min supine-seated orthostatic stress test. Retrospective and prospective falling rates (falls/year) were extracted from facility falls incident reports. All-cause 3-year mortality was determined. Data are reported as mean ± standard error. Results: Data were obtained from 116 older adults (aged 84.2 ± 0.9 years; 44% males) living in two long term care facilities. The mean FI-MDS was 0.36 ± 0.01; FI-MDS was correlated with age (r = 0.277; p = 0.003). Those who were frail (FI ≥ 0.27) had larger Initial (− 17.8 ± 4.2 vs − 6.1 ± 3.3 mmHg, p = 0.03) and Consensus (− 22.7 ± 4.3 vs − 11.5 ± 3. 3 mmHg, p = 0.04) orthostatic reductions in systolic arterial pressure. Frail individuals had higher prospective and retrospective falling rates and higher 3-year mortality. Receiver operating characteristic curves evaluated the ability of FI-MDS alone to predict prospective falls (sensitivity 72%, specificity 36%), Consensus OH (sensitivity 68%, specificity 60%) and 3-year mortality (sensitivity 77%, specificity 49%). Kaplan Meier survival analyses showed significantly higher 3-year mortality in those who were frail compared to the non-frail (p = 0.005). Conclusions: Frailty can be captured using a frailty index based on MDS data in elderly individuals living in long term care, and is related to susceptibility to orthostatic hypotension, falling risk and 3-year mortality. Use of the MDS to generate a frailty index may represent a simple and convenient risk assessment tool for older adults living in long term care. Older adults who are both frail and have impaired orthostatic blood pressure control have a particularly high risk of falling and should receive tailored management to mitigate this ris

    Dynamic Wheelchair Seating Positions Impact Cardiovascular Function after Spinal Cord Injury

    Get PDF
    Background Innovative wheelchairs allow individuals to change position easily for comfort and social situations. While these wheelchairs are beneficial in multiple ways, the effects of position changes on blood pressure might exacerbate hypotension and cerebral hypoperfusion, particularly in those with spinal cord injury (SCI) who can have injury to autonomic nerves that regulate cardiovascular control. Conversely, cardiovascular benefits may be obtained with lowered seating. Here we investigate the effect of moderate changes in wheelchair position on orthostatic cardiovascular and cerebrovascular reflex control. Methods Nineteen individuals with SCI and ten neurologically-intact controls were tested in supine and seated positions (neutral, lowered, and elevated) in the Elevation™ wheelchair. Participants with SCI were stratified into two groups by the severity of injury to cardiovascular autonomic pathways. Beat-to-beat blood pressure, heart rate and middle cerebral artery blood flow velocity (MCAv) were recorded non-invasively. Results Supine blood pressure and MCAv were reduced in individuals with lesions to autonomic pathways, and declined further with standard seating compared to those with preserved autonomic control. Movement to the elevated position triggered pronounced blood pressure and MCAv falls in those with autonomic lesions, with minimum values significantly reduced compared to the seated and lowered positions. The cumulative duration spent below supine blood pressure was greatest in this group. Lowered seating bolstered blood pressure in those with lesions to autonomic pathways. Conclusions Integrity of the autonomic nervous system is an important variable that affects cardiovascular responses to orthostatic stress and should be considered when individuals with SCI or autonomic dysfunction are selecting wheelchairs
    corecore