69 research outputs found

    Density Matrix Reconstructions in Ultrafast Transmission Electron Microscopy: Uniqueness, Stability, and Convergence Rates

    Get PDF
    In the recent paper [17] the first experimental determination of the density matrix of a free electron beam has been reported. The employed method leads to a linear inverse problem with a positive semidefinite operator as unknown. The purpose of this paper is to complement the experimental and algorithmic results in the work mentioned above by a mathematical analysis of the inverse problem concerning uniqueness, stability, and rates of convergence under different types of a-priori information

    Ultrafast nano-imaging of the order parameter in a structural phase transition

    Get PDF
    Understanding microscopic processes in materials and devices that can be switched by light requires experimental access to dynamics on nanometer length and femtosecond time scales. Here, we introduce ultrafast dark-field electron microscopy, tailored to map the order parameter across a structural phase transition. We track the evolution of charge-density wave domains in 1T-TaS2 after ultrashort laser excitation, elucidating relaxation pathways and domain wall dynamics. The unique benefits of selective contrast enhancement will inspire future beam shaping technology in ultrafast transmission electron microscopy.Comment: Main text, supplementary materials, and five movie

    Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy

    Get PDF
    The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distortion on their intrinsic ultrafast time and nanometer length scales are still lacking. Here, we introduce ultrafast convergent beam electron diffraction (U-CBED) with a nanoscale probe beam for the quantitative retrieval of the time-dependent local distortion tensor. We demonstrate its capabilities by investigating the ultrafast acoustic deformations close to the edge of a single-crystalline graphite membrane. Tracking the structural distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an acoustic membrane breathing mode with spatially modulated amplitude, governed by the optical near field structure at the membrane edge. Furthermore, an in-plane polarized acoustic shock wave is launched at the membrane edge, which triggers secondary acoustic shear waves with a pronounced spatio-temporal dependency. The experimental findings are compared to numerical acoustic wave simulations in the continuous medium limit, highlighting the importance of microscopic dissipation mechanisms and ballistic transport channels

    Nonlinear Spectroscopy and All-Optical Switching of Femtosecond Soliton Molecules

    Get PDF
    The emergence of confined structures and pattern formation are exceptional manifestations of concurring nonlinear interactions found in a variety of physical, chemical and biological systems[1]. Optical solitons are a hallmark of extreme spatial or temporal confinement enabled by a variety of nonlinearities. Such particle-like structures can assemble in complex stable arrangements, forming "soliton molecules"[2,3]. Recent works revealed oscillatory internal motions of these bound states, akin to molecular vibrations[4-8]. These observations beg the question as to how far the "molecular" analogy reaches, whether further concepts from molecular spectroscopy apply in this scenario, and if such intra-molecular dynamics can be externally driven or manipulated. Here, we probe and control such ultrashort bound-states in an optical oscillator, utilizing real-time spectroscopy and time-dependent external perturbations. We introduce two-dimensional spectroscopy of the linear and nonlinear bound-state response and resolve anharmonicities in the soliton interaction leading to overtone and sub-harmonic generation. Employing a non-perturbative interaction, we demonstrate all-optical switching between distinct states with different binding separation, opening up novel schemes of ultrafast spectroscopy, optical logic operations and all-optical memory.Comment: 3 figure

    Nanoscale mapping of ultrafast magnetization dynamics with femtosecond Lorentz microscopy

    Get PDF
    Novel time-resolved imaging techniques for the investigation of ultrafast nanoscale magnetization dynamics are indispensable for further developments in light-controlled magnetism. Here, we introduce femtosecond Lorentz microscopy, achieving a spatial resolution below 100 nm and a temporal resolution of 700 fs, which gives access to the transiently excited state of the spin system on femtosecond timescales and its subsequent relaxation dynamics. We demonstrate the capabilities of this technique by spatio-temporally mapping the light-induced demagnetization of a single magnetic vortex structure and quantitatively extracting the evolution of the magnetization field after optical excitation. Tunable electron imaging conditions allow for an optimization of spatial resolution or field sensitivity, enabling future investigations of ultrafast internal dynamics of magnetic topological defects on 10-nanometer length scales

    Structure and Non-Equilibrium Heat-Transfer of a Physisorbed Molecular Layer on Graphene

    Get PDF
    The structure of a physisorbed sub-monolayer of 1,2-bis(4-pyridyl)ethylene (bpe) on epitaxial graphene is investigated by Low-Energy Electron Diffraction and Scanning Tunneling Microscopy. Additionally, non-equilibrium heat-transfer between bpe and the surface is studied by Ultrafast Low-Energy Electron Diffraction. Bpe arranges in an oblique unit cell which is not commensurate with the substrate. Six different rotational and/or mirror domains, in which the molecular unit cell is rotated by 28{\pm}0.1{\deg} with respect to the graphene surface, are identified. The molecules are weakly physisorbed, as evidenced by the fact that they readily desorb at room temperature. At liquid nitrogen temperature, however, the layers are stable and time-resolved experiments can be performed. The temperature changes of the molecules and the surface can be measured independently through the Debye-Waller factor of their individual diffraction features. Thus, the heat flow between bpe and the surface can be monitored on a picosecond timescale. The time-resolved measurements, in combination with model simulations, show the existence of three relevant thermal barriers between the different layers. The thermal boundary resistance between the molecular layer and graphene was found to be 2{\pm}1{\cdot}10-8 K m2 W-1
    • …
    corecore