6 research outputs found

    Characterisation of CaCO3 phases during strain-specific ureolytic precipitation

    Get PDF
    Numerous microbial species can selectively precipitate mineral carbonates with enhanced mechanical properties, however, understanding exactly how they achieve this control represents a major challenge in the field of biomineralisation. We have studied microbial induced calcium carbonate (CaCO3) precipitation (MICP) in three ureolytic bacterial strains from the Sporosarcina family, including S. newyorkensis, a newly isolated microbe from the deep sea. We find that the interplay between structural water and strain-specific amino acid groups is fundamental to the stabilisation of vaterite and that, under the same conditions, different isolates yield distinctly different polymorphs. The latter is found to be associated with different urease activities and, consequently, precipitation kinetics, which change depending on pressure-temperature conditions. Further, CaCO3 polymorph selection also depends on the coupled effect of chemical treatment and initial bacterial concentrations. Our findings provide new insights into strain-specific CaCO3 polymorphic selection and stabilisation, and open up promising avenues for designing bio-reinforced geo-materials that capitalise on the different particle bond mechanical properties offered by different polymorphs

    Experimental optimization of microbially induced calcite precipitation (Micp) for contact erosion control in earth dams

    No full text
    Microbial Induced Calcite Precipitation (MICP) is a bio-mediated soil improvement technique which is low-cost, low-maintenance and non-disruptive to wild life and aesthetics. It holds the potential for simultaneously retaining the hydraulic conductivity, increasing the shear resistance and preferentially cementing the interface between coarse and fine particles. Previous studies have shown that, unlike other biocementation works—such as liquefaction control and railroad embankment stabilisation—the shear strength increase necessary on interfaces vulnerable to contact erosion in earth dams is very low, requiring different optimal MICP treatment formulations to be explored. The study presented herein focuses on MICP treatment across the boundary between a fine sand and a coarse sand in the context of one-dimensional flow column experiments. Treatment optimisation is evaluated by varying important parameters including formulations of chemical amendments, and the particle size distribution of the fine grained fraction. Subsequently, a procedure is developed for measuring the calcite bond shear strength using an Erosion Function Apparatus (EFA), whereby an undisturbed MICP treated specimen is slowly protruded into a flume and eroded by surface-parallel flow. Measurements of the surface movement of the eroding sample are made with a laser reflecting on the soil surface in the flume. The progress of erosion can hence be monitored as the flow velocity is increased. Results open up new interesting perspectives on the treatment scheme needed for MICP implementation for contact erosion control in dams

    Characterisation of CaCO<inf>3</inf> phases during strain-specific ureolytic precipitation

    No full text
    Numerous microbial species can selectively precipitate mineral carbonates with enhanced mechanical properties, however, understanding exactly how they achieve this control represents a major challenge in the field of biomineralisation. We have studied microbial induced calcium carbonate (CaCO3) precipitation (MICP) in three ureolytic bacterial strains from the Sporosarcina family, including S. newyorkensis, a newly isolated microbe from the deep sea. We find that the interplay between structural water and strain-specific amino acid groups is fundamental to the stabilisation of vaterite and that, under the same conditions, different isolates yield distinctly different polymorphs. The latter is found to be associated with different urease activities and, consequently, precipitation kinetics, which change depending on pressure-temperature conditions. Further, CaCO3 polymorph selection also depends on the coupled effect of chemical treatment and initial bacterial concentrations. Our findings provide new insights into strain-specific CaCO3 polymorphic selection and stabilisation, and open up promising avenues for designing bio-reinforced geo-materials that capitalise on the different particle bond mechanical properties offered by different polymorphs
    corecore