979 research outputs found

    Isothermal Bondi accretion in Jaffe and Hernquist galaxies with a central black hole: fully analytical solutions

    Full text link
    One of the most active fields of research of modern-day astrophysics is that of massive black hole formation and co-evolution with the host galaxy. In these investigations, ranging from cosmological simulations, to semi-analytical modeling, to observational studies, the Bondi solution for accretion on a central point mass is widely adopted. In this work we generalize the classical Bondi accretion theory to take into account the effects of the gravitational potential of the host galaxy, and of radiation pressure in the optically thin limit. Then, we present the fully analytical solution, in terms of the Lambert-Euler WW-function, for isothermal accretion in Jaffe and Hernquist galaxies with a central black hole. The flow structure is found to be sensitive to the shape of the mass profile of the host galaxy. These results and the formulae that are provided, mostly important the one for the critical accretion parameter, allow for a direct evaluation of all flow properties, and are then useful for the above mentioned studies. As an application, we examine the departure from the true mass accretion rate of estimates obtained using the gas properties at various distances from the black hole, under the hypothesis of classical Bondi accretion. An overestimate is obtained from regions close to the black hole, and an underestimate outside a few Bondi radii; the exact position of the transition between the two kinds of departure depends on the galaxy model.Comment: 18 pages, 6 figures, submitted to ApJ, comments welcom

    Motion of a rigid body in a tidal field: an application to elliptical galaxies in clusters

    Get PDF
    We investigate the motion, near the equilibrium configurations, of an initially spinless rigid body subject to an external tidal field. Two cases are considered: when the center of mass of the body is at rest at the equilibrium point of the field generated by a generic mass distribution, and when it is placed on a circular orbit subject to a spherically symmetric potential. A complete analysis of the equilibrium configurations is carried out for both cases. First, we derive the conditions for the stable equilibria, and then we analyze the frequencies of oscillations around the equilibrium positions. In view of these results, we consider the problem of alignment of galaxies in clusters. After estimating the period of the oscillations induced on the galaxies by the tidal field of the cluster, we discuss the possible effect of resonances between stellar orbits inside the galaxy and the oscillations of the galaxy as a whole; this may be a mechanism responsible for producing an intracluster stellar population.Comment: 20 pages LaTeX file, plus 5 .(e)ps figures and macro celmec.sty -- Celestial Mechanics, in pres

    Free-free absorption effects on Eddington luminosity

    Full text link
    In standard treatments the Eddington luminosity is calculated by assuming that the electron-photon cross section is well described by the Thomson cross section which is gray (frequency independent). Here we discuss some consequence of the introduction of free-free opacity in the Eddington luminosity computation: in particular, due to the dependence of free-free emission on the square of the gas density, it follows that the associated absorption cross section increases linearly with the gas density, so that in high density environments Eddington luminosity is correspondingly reduced. We present a summary of an ongoing exploration of the parameter space of the problem, and we conclude that Eddington luminosity in high density environments can be lowered by a factor of ten or more, making it considerably easier for black holes to accelerate and eject ambient gas.Comment: 4 pages, to appear in "Plasmas in the Laboratory and in the Universe: new insights and new challenges", G. Bertin, D. Farina, R. Pozzoli eds., AIP Conference Proceeding

    Alignment and morphology of elliptical galaxies: the influence of the cluster tidal field

    Full text link
    We investigate two possible effects of the tidal field induced by a spherical cluster on its elliptical galaxy members: the modification of the ellipticity of a spherical galaxy and the isophotal alignment in the cluster radial direction of a misaligned prolate galaxy. Numerical N-body simulations have been performed for radial and circular galactic orbits. The properties of the stars' zero--velocity surfaces in the perturbed galaxies are explored briefly, and the adiabaticity of the galaxy to the external field is discussed. For a choice of parameters characteristic of rich clusters we find that the induced ellipticity on a spherical galaxy is below or close to the detectability level. But we find that the tidal torque can result in significant isophotal alignment of the galaxies' major axis with the cluster radial direction if the galaxy is outside the cluster core radius. The time required for the alignment is very short compared with the Hubble time. A significant increase in the ellipticity of the outer isophotes of the prolate model is also found, but with no observable isophotal twisting. Our main prediction is an alignment segregation of the elliptical galaxy population according to whether their orbits lie mostly outside or inside the cluster core radius. These results also suggest that galactic alignment in rich clusters is not incompatible with a bottom-up galaxy formation scenario.Comment: 20 pages, uuencoded compressed tarred postscrip
    • …
    corecore