26 research outputs found

    Deep Learning with LPC and Wavelet Algorithms for Driving Fault Diagnosis

    No full text
    Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machine learning algorithms for classification. Previous studies have examined driving fault identification, but less attention has focused on using voiceprint features to locate corresponding faults. This research uses 43 different common vehicle mechanical malfunction condition voiceprint signals to construct the dataset. These datasets were filtered by linear predictive coefficient (LPC) and wavelet transform(WT). After the original voiceprint fault sounds were filtered and obtained the main fault characteristics, the deep neural network (DNN), convolutional neural network (CNN), and long short-term memory (LSTM) architectures are used for identification. The experimental results show that the accuracy of the CNN algorithm is the best for the LPC dataset. In addition, for the wavelet dataset, DNN has the best performance in terms of identification performance and training time. After cross-comparison of experimental results, the wavelet algorithm combined with DNN can improve the identification accuracy by up to 16.57% compared with other deep learning algorithms and reduce the model training time by up to 21.5% compared with other algorithms. Realizing the cross-comparison of recognition results through various machine learning methods, it is possible for the vehicle to proactively remind the driver of the real-time potential hazard of vehicle machinery failure

    A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo

    No full text
    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design

    Advances in Miniaturized Instruments for Genomics

    No full text
    In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices

    Investigation of an Intelligent System for Fiber Optic-Based Epidural Anesthesia

    No full text
    Even though there have been many approaches to assist the anesthesiologists in performing regional anesthesia, none of the prior arts may be said as an unrestricted technique. The lack of a design that is with sufficient sensitivity to the targets of interest and automatic indication of needle placement makes it difficult to all-round implementation of field usage of objectiveness. In addition, light-weight easy-to-use realization is the key point of portability. This paper reports on an intelligent system of epidural space identification using optical technique, with particular emphasis on efficiency-enhanced aspects. Statistical algorithms, implemented in a dedicated field-programmable hardware platform along with an on-platform application-specific integrated chip, used to advance real-time self decision making in needle advancement are discussed together with the feedback results. Clinicians' viewpoint of improving the correct rate of our technique is explained in detail. Our study demonstrates not only that the improved system is able to behave as if it is a skillful anesthesiologist but also it has potential to bring promising assist into clinical use under varied conditions and small amount of sample, provided that several concerns are addressed

    How to Implement Automotive Fault Diagnosis Using Artificial Intelligence Scheme

    No full text
    The necessity of vehicle fault detection and diagnosis (VFDD) is one of the main goals and demands of the Internet of Vehicles (IoV) in autonomous applications. This paper integrates various machine learning algorithms, which are applied to the failure prediction and warning of various types of vehicles, such as the vehicle transmission system, abnormal engine operation, and tire condition prediction. This paper first discusses the three main AI algorithms, such as supervised learning, unsupervised learning, and reinforcement learning, and compares the advantages and disadvantages of each algorithm in the application of system prediction. In the second part, we summarize which artificial intelligence algorithm architectures are suitable for each system failure condition. According to the fault status of different vehicles, it is necessary to carry out the evaluation of the digital filtering process. At the same time, it is necessary to preconstruct its model analysis and adjust the parameter attributes, types, and number of samples of various vehicle prediction models according to the analysis results, followed by optimization to obtain various vehicle models. Finally, through a cross-comparison and sorting, the artificial intelligence failure prediction models can be obtained, which can correspond to the failure status of a certain car model and a certain system, thereby realizing a most appropriate AI model for a specific application

    Double Assurance of Epidural Space Detection Using Fiberoptics-Based Needle Design and Autofluorescence Technologies for Epidural Blockade in Painless Labor

    No full text
    Purpose: Technology of reflectance spectroscopy incorporated with auto-fluorescence spectroscopy were employed to increase the safety of epidural placement in regional anesthesia which is generally used for surgery, epidural anesthesia, post-operative pain control and painless childbirth. Method: Ex vivo study of auto-fluorescence spectroscopy was performed for the para-vertebral tissues contained fat, interspinous ligament, supraspinous ligament and ligamentumflavum by multimode microplate reader at wavelength 405 nm for the purpose of tissue differentiation. A specially designed optic-fiber-embedded needle was employed to incorporate with both reflectance and autofluorescence spectroscopies in order to probe the epidural space as double assurance demands. In vivo study was carried out in a Chinese native swine weighted about 30 kg under intubated general anesthesia with ventilation support. The reflective (405 nm) and autofluorescence signals (λ and λ*) were recorded at 5 different sites by an oscilloscope during the needle puncture procedure from skin to epidural space in the back of the swine. Results: Study of either autofluorescence spectroscopy for tissue samples or ex vivo needle puncture in porcine trunk tissues indicates that ligmentumflavum has at least 10-fold higher fluorescence intensity than the other tissues. In the in vivo study, ligamentumflavum shows a double-peak character for both reflectance and autofluorescence signals. The epidural space is located right after the drop from the double-peak. Both peaks of reflectance and fluorescence are coincident which ensures that the epidural space is correctly detected. Conclusions: The fiber-optical technologies of double-assurance demands for tissue discrimination during epidural needle puncture can not only provide an objective visual information in a real-time fashion but also it can help the operator to achieve much higher success rate in this anesthesia procedure

    Portable optical epidural needle-a CMOS-based system solution and its circuit design.

    No full text
    Epidural anesthesia is a common anesthesia method yet up to 10% of procedures fail to provide adequate analgesia. This is usually due to misinterpreting the tactile information derived from the advancing needle through the complex tissue planes. Incorrect placement also can cause dural puncture and neural injury. We developed an optic system capable of reliably identifying tissue planes surrounding the epidural space. However the new technology was too large and cumbersome for practical clinical use. We present a miniaturized version of our optic system using chip technology (first generation CMOS-based system) for logic functions. The new system was connected to an alarm that was triggered once the optic properties of the epidural were identified. The aims of this study were to test our miniaturized system in a porcine model and describe the technology to build this new clinical tool. Our system was tested in a porcine model and identified the epidural space in the lumbar, low and high thoracic regions of the spine. The new technology identified the epidural space in all but 1 of 46 attempts. Experimental results from our fabricated integrated circuit and animal study show the new tool has future clinical potential
    corecore