1,007 research outputs found
Non-negative mixtures
This is the author's accepted pre-print of the article, first published as M. D. Plumbley, A. Cichocki and R. Bro. Non-negative mixtures. In P. Comon and C. Jutten (Ed), Handbook of Blind Source Separation: Independent Component Analysis and Applications. Chapter 13, pp. 515-547. Academic Press, Feb 2010. ISBN 978-0-12-374726-6 DOI: 10.1016/B978-0-12-374726-6.00018-7file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.2
Surfactant-induced migration of a spherical drop in Stokes flow
In Stokes flows, symmetry considerations dictate that a neutrally-buoyant
spherical particle will not migrate laterally with respect to the local flow
direction. We show that a loss of symmetry due to flow-induced surfactant
redistribution leads to cross-stream drift of a spherical drop in Poiseuille
flow. We derive analytical expressions for the migration velocity in the limit
of small non-uniformities in the surfactant distribution, corresponding to
weak-flow conditions or a high-viscosity drop. The analysis predicts that the
direction of migration is always towards the flow centerline.Comment: Significant extension with additional text, figures, equations, et
Sequential blind source separation based exclusively on second-order statistics developed for a class of periodic signals
A sequential algorithm for the blind separation of a class of periodic source signals is introduced in this paper. The algorithm is based only on second-order statistical information and exploits the assumption that the source signals have distinct periods. Separation is performed by sequentially converging to a solution which in effect diagonalizes the output covariance matrix constructed at a lag corresponding to the fundamental period of the source we select, the one with the smallest period. Simulation results for synthetic signals and real electrocardiogram recordings show that the proposed algorithm has the ability to restore statistical independence, and its performance is comparable to that of the equivariant adaptive source separation (EASI) algorithm, a benchmark high-order statistics-based sequential algorithm with similar computational complexity. The proposed algorithm is also shown to mitigate the limitation that the EASI algorithm can separate at most one Gaussian distributed source. Furthermore, the steady-state performance of the proposed algorithm is compared with that of EASI and the block-based second-order blind identification (SOBI) method
Novel Features for Brain-Computer Interfaces
While conventional approaches of BCI feature extraction are based on the power spectrum, we
have tried using nonlinear features for classifying BCI data. In this paper, we report our test results
and findings, which indicate that the proposed method is a potentially useful addition to current
feature extraction techniques
Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives
Part 2 of this monograph builds on the introduction to tensor networks and
their operations presented in Part 1. It focuses on tensor network models for
super-compressed higher-order representation of data/parameters and related
cost functions, while providing an outline of their applications in machine
learning and data analytics. A particular emphasis is on the tensor train (TT)
and Hierarchical Tucker (HT) decompositions, and their physically meaningful
interpretations which reflect the scalability of the tensor network approach.
Through a graphical approach, we also elucidate how, by virtue of the
underlying low-rank tensor approximations and sophisticated contractions of
core tensors, tensor networks have the ability to perform distributed
computations on otherwise prohibitively large volumes of data/parameters,
thereby alleviating or even eliminating the curse of dimensionality. The
usefulness of this concept is illustrated over a number of applied areas,
including generalized regression and classification (support tensor machines,
canonical correlation analysis, higher order partial least squares),
generalized eigenvalue decomposition, Riemannian optimization, and in the
optimization of deep neural networks. Part 1 and Part 2 of this work can be
used either as stand-alone separate texts, or indeed as a conjoint
comprehensive review of the exciting field of low-rank tensor networks and
tensor decompositions.Comment: 232 page
Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives
Part 2 of this monograph builds on the introduction to tensor networks and
their operations presented in Part 1. It focuses on tensor network models for
super-compressed higher-order representation of data/parameters and related
cost functions, while providing an outline of their applications in machine
learning and data analytics. A particular emphasis is on the tensor train (TT)
and Hierarchical Tucker (HT) decompositions, and their physically meaningful
interpretations which reflect the scalability of the tensor network approach.
Through a graphical approach, we also elucidate how, by virtue of the
underlying low-rank tensor approximations and sophisticated contractions of
core tensors, tensor networks have the ability to perform distributed
computations on otherwise prohibitively large volumes of data/parameters,
thereby alleviating or even eliminating the curse of dimensionality. The
usefulness of this concept is illustrated over a number of applied areas,
including generalized regression and classification (support tensor machines,
canonical correlation analysis, higher order partial least squares),
generalized eigenvalue decomposition, Riemannian optimization, and in the
optimization of deep neural networks. Part 1 and Part 2 of this work can be
used either as stand-alone separate texts, or indeed as a conjoint
comprehensive review of the exciting field of low-rank tensor networks and
tensor decompositions.Comment: 232 page
Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis
The widespread use of multi-sensor technology and the emergence of big
datasets has highlighted the limitations of standard flat-view matrix models
and the necessity to move towards more versatile data analysis tools. We show
that higher-order tensors (i.e., multiway arrays) enable such a fundamental
paradigm shift towards models that are essentially polynomial and whose
uniqueness, unlike the matrix methods, is guaranteed under verymild and natural
conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical
backbone, data analysis techniques using tensor decompositions are shown to
have great flexibility in the choice of constraints that match data properties,
and to find more general latent components in the data than matrix-based
methods. A comprehensive introduction to tensor decompositions is provided from
a signal processing perspective, starting from the algebraic foundations, via
basic Canonical Polyadic and Tucker models, through to advanced cause-effect
and multi-view data analysis schemes. We show that tensor decompositions enable
natural generalizations of some commonly used signal processing paradigms, such
as canonical correlation and subspace techniques, signal separation, linear
regression, feature extraction and classification. We also cover computational
aspects, and point out how ideas from compressed sensing and scientific
computing may be used for addressing the otherwise unmanageable storage and
manipulation problems associated with big datasets. The concepts are supported
by illustrative real world case studies illuminating the benefits of the tensor
framework, as efficient and promising tools for modern signal processing, data
analysis and machine learning applications; these benefits also extend to
vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker
decomposition, HOSVD, tensor networks, Tensor Train
Brain-Computer Interfaces: Towards Practical Implementations and Potential Applications
[No abstract available
- …