24,644 research outputs found

    The Flagellar Motility of \u3cem\u3eChlamydomonas pf25\u3c/em\u3e Mutant Lacking an AKAP-binding Protein Is Overtly Sensitive to Medium Conditions

    Get PDF
    Radial spokes are a conserved axonemal structural complex postulated to regulate the motility of 9 + 2 cilia and flagella via a network of phosphoenzymes and regulatory proteins. Consistently, a Chlamydomonas radial spoke protein, RSP3, has been identified by RII overlays as an A-kinase anchoring protein (AKAP) that localizes the cAMP-dependent protein kinase (PKA) holoenzyme by binding to the RIIa domain of PKA RII subunit. However, the highly conserved docking domain of PKA is also found in the N termini of several AKAP-binding proteins unrelated to PKA as well as a 24-kDa novel spoke protein, RSP11. Here, we report that RSP11 binds to RSP3 directly in vitro and colocalizes with RSP3 toward the spoke base near outer doublets and dynein motors in axonemes. Importantly, RSP11 mutant pf25 displays a spectrum of motility, from paralysis with flaccid or twitching flagella as other spoke mutants to wild-typelike swimming. The wide range of motility changes reversibly depending on the condition of liquid media without replacing defective proteins. We postulate that radial spokes use the RIIa/AKAP module to regulate ciliary and flagellar beating; absence of the spoke RIIa protein exposes a medium-sensitive regulatory mechanism that is not obvious in wild-type Chlamydomonas

    Flagellar Radial Spoke Protein 2 Is a Calmodulin Binding Protein Required for Motility in \u3cem\u3eChlamydomonas reinhardtii\u3c/em\u3e

    Get PDF
    Genetic and morphological studies have revealed that the radial spokes regulate ciliary and flagellar bending. Functional and biochemical analysis and the discovery of calmodulin in the radial spokes suggest that the regulatory mechanism involves control of axonemal protein phosphorylation and calcium binding to spoke proteins. To identify potential regulatory proteins in the radial spoke, in-gel kinase assays were performed on isolated axonemes and radial spoke fractions. The results indicated that radial spoke protein 2 (RSP2) can bind ATP and transfer phosphate in vitro. RSP2 was cloned and mapped to the PF24 locus, a gene required for motility. Sequencing revealed that pf24 contains a point mutation converting the first ATG to ATA, resulting in only trace amounts of RSP2 and confirming the RSP2 mapping. Surprisingly, the sequence does not include signature domains for conventional kinases, indicating that RSP2 may not perform as a protein kinase in vivo. However, the predicted RSP2 protein sequence contains Ca2+-dependent calmodulin binding motifs and a GAF domain, a domain found in diverse signaling proteins for binding small ligands including cyclic nucleotides. As predicted from the sequence, recombinant RSP2 binds calmodulin in a calcium-dependent manner. We postulate that RSP2 is a regulatory subunit of the radial spoke involved in localization of calmodulin for control of motility

    Novel LC8 Mutations Have Disparate Effects on the Assembly and Stability of Flagellar Complexes

    Get PDF
    LC8 functions as a dimer crucial for a variety of molecular motors and non-motor complexes. Emerging models, founded on structural studies, suggest that the LC8 dimer promotes the stability and refolding of dimeric target proteins in molecular complexes, and its interactions with selective target proteins, including dynein subunits, is regulated by LC8 phosphorylation, which is proposed to prevent LC8 dimerization. To test these hypotheses in vivo, we determine the impacts of two new LC8 mutations on the assembly and stability of defined LC8-containing complexes in Chlamydomonas flagella. The three types of dyneins and the radial spoke are disparately affected by dimeric LC8 with a C-terminal extension. The defects include the absence of specific subunits, complex instability, and reduced incorporation into the axonemal super complex. Surprisingly, a phosphomimetic LC8 mutation, which is largely monomeric in vitro, is still dimeric in vivo and does not significantly change flagellar generation and motility. The differential defects in these flagellar complexes support the structural model and indicate that modulation of target proteins by LC8 leads to the proper assembly of complexes and ultimately higher level complexes. Furthermore, the ability of flagellar complexes to incorporate the phosphomimetic LC8 protein and the modest defects observed in the phosphomimetic LC8 mutant suggest that LC8 phosphorylation is not an effective mechanism for regulating molecular complexes
    • …
    corecore