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Radial spokes are a conserved axonemal structural complex postulated to regulate the motility of 9 � 2 cilia and flagella
via a network of phosphoenzymes and regulatory proteins. Consistently, a Chlamydomonas radial spoke protein, RSP3,
has been identified by RII overlays as an A-kinase anchoring protein (AKAP) that localizes the cAMP-dependent protein
kinase (PKA) holoenzyme by binding to the RIIa domain of PKA RII subunit. However, the highly conserved docking
domain of PKA is also found in the N termini of several AKAP-binding proteins unrelated to PKA as well as a 24-kDa
novel spoke protein, RSP11. Here, we report that RSP11 binds to RSP3 directly in vitro and colocalizes with RSP3 toward
the spoke base near outer doublets and dynein motors in axonemes. Importantly, RSP11 mutant pf25 displays a spectrum
of motility, from paralysis with flaccid or twitching flagella as other spoke mutants to wild-typelike swimming. The wide
range of motility changes reversibly depending on the condition of liquid media without replacing defective proteins. We
postulate that radial spokes use the RIIa/AKAP module to regulate ciliary and flagellar beating; absence of the spoke RIIa
protein exposes a medium-sensitive regulatory mechanism that is not obvious in wild-type Chlamydomonas.

INTRODUCTION

The oscillatory beating of 9 � 2 cilia and flagella is tightly
regulated (reviewed by Smith and Yang, 2004). However,
the molecular basis of the regulation remains to be eluci-
dated. Chlamydomonas mutants have been invaluable to ad-
dress this challenge with unique approaches. Mutations in
genes encoding dynein motors and the adjacent dynein reg-
ulatory complex suppress the paralysis of mutants defective
in radial spokes or central pair, leading to the hypothesis
that central pair and radial spokes constitute a system that
controls the dynein-driven motility (Huang et al., 1982). The
control system may determine the preferential sliding
among the nine outer doublets (Mitchell, 2003; Wargo and
Smith, 2003) and is involved in motility changes mediated
by second messengers and phosphoenzymes (reviewed by
Porter and Sale, 2000). In particular, cAMP-dependent pro-
tein kinase (PKA) and calcium/calmodulin-dependent pro-
tein kinases are anchored to axonemes, and the heightened
kinase activities in the mutant axonemes are correlated with
paralyzed flagella and inhibited motor activities (Howard et
al., 1994; Habermacher and Sale, 1997; King and Dutcher,
1997; Smith, 2002; Hendrickson et al., 2004).

The coupling of second messengers, phosphoenzymes,
and the control system is further illuminated by the identi-
fication of two A-kinase anchoring proteins (AKAPs), one
each at radial spokes and central pair apparatus, by a com-
prehensive RII overlay (Gaillard et al., 2001). This well es-

tablished method using RII, the regulatory subunit of PKA
as a probe, is credited for identifying numerous AKAPs
(Bregman et al., 1989; reviewed by Pawson and Scott, 2005)
that dock PKA as well as other signaling molecules along the
molecular scaffolds, possibly for specific and integrated reg-
ulation (Dell’Acqua et al., 2002; Malbon et al., 2004; reviewed
by Wong and Scott, 2004). Anchoring of PKA, the central
tenant of AKAPs, is achieved by the hydrophobic associa-
tion of an amphipathic region in AKAPs with RIIa domain at
the N terminus of RII.

The spoke AKAP that the RII probe binds to is radial
spoke protein (RSP) 3, ideally located at the base of radial
spoke for anchoring the structural complex to outer doublets
(Diener et al., 1993) and near dynein motors and presumably
for targeting PKA regulatory pathways as well. The simplest
interpretation is that RSP3 directs the cAMP-sensitive ho-
loenzymes near dynein motors to locally change ciliary and
flagellar motility (Gaillard et al., 2001).

However, in addition to PKA RII, certain AKAPs may
interact with non-RII proteins that share the RIIa domain
known for dimerization and docking to AKAPs via hydro-
phobic interaction (Newlon et al., 2001). A domain similar to
RIIa is present in RI, an isoform of RII and binds the am-
phipathic helix of AKAPs as well, albeit at a lower affinity
(Banky et al., 2000). Phenotypes of RI and RII knockout mice
reveal distinct functions of RI and RII (reviewed by Amieux
and McKnight, 2002). Most intriguingly, inhibitors of PKA
enzymatic activity and the peptides that perturb the anchor-
age of the regulatory subunit affect sperm flagellar motility
differently (Vijayaraghavan et al., 1997). These findings sug-
gest that the functions of some AKAPs, at least in mamma-
lian sperm, are independent to RII or PKA.

This prediction is substantiated by the finding of non-PKA
proteins that contain an RIIa domain at their N termini. ASP,
ropporin, CABYR, and SP17 are abundant in testis, sperm,
and the flagellar compartment and bind sperm AKAPs in
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vitro (Carr et al., 2001; Naaby-Hansen et al., 2002; Lea et al.,
2004; reviewed by Eddy et al., 2003). Intriguingly, they do
not contain the signature cAMP-binding domains that me-
diate cAMP-dependent allosteric regulation of the holoen-
zyme. Rather, yeast two-hybrid system shows that the C
terminus of ropporin associates with rhophilin (Fujita et al.,
2000), a Rho-binding protein postulated to be a cytoskeletal
target protein for the small GTPase (Nakamura et al., 1999),
whereas CABYR and SP17 contains calcium-signaling re-
lated modules (Richardson, 1994; Naaby-Hansen et al., 2002).
The physiological partners and functions of these non-PKA
RIIa proteins remains to be established.

Given the presence of multiple RIIa proteins, particularly
in flagella, it is central to determine experimentally the phys-
iological binding partner of the spoke AKAP to elucidate the
functional mechanism of radial spokes and the spoke AKAP.
Recently, a systematic characterization of new spoke pro-
teins revealed that the 24-kDa RSP11 is a non-PKA RIIa
protein (submission). The RSP11 mutant pf25 has been iden-
tified previously by dikaryon rescue that cytoplasmic com-
ponents from wild-type cells complement the mutant gene
product in mating heterozygotes (Huang et al., 1981). Pf25 is
unique compared with the other spoke mutants that the
assembly of the macromolecular complex is affected leading
to deficiency of multiple spoke proteins, gross morphologi-
cal defect and paralyzed flagella. In contrast, pf25 lacks the
24-kDa RSP11 and has reduced amount of the 40-kDa RSP8,
whereas the ultrastructure and protein composition are
largely unaffected. Importantly, pf25 described as swimming
actively but in an abnormal manner provides a rare oppor-
tunity to study the functional mechanism of the non-PKA
RIIa protein and radial spokes. Here, we describe the clon-
ing of RSP11 gene and present both in vitro and in vivo
evidence suggesting that radial spokes use non-PKA RIIa/
AKAP module for the control of ciliary and flagellar beating.

MATERIALS AND METHODS

Strains and Culture Conditions
Chlamydomonas reinhardtii strains used in this report include wild-type strains
[cc124(�), cc125(�), cc620(�), and cc621(�)]; the defined radial spoke mu-
tants pf14, pf17, pf24 and the available pf25 alleles pf25(�),pf25(�) pf25A pf25D
pf25F (Huang et al., 1981); and the central pair mutants pf6 and pf19. These
strains are acquired from the Chlamydomonas Genetics Center (Duke Univer-
sity, Durham, NC). The pf28pf30 strain lacks both the 20S outer arm dynein
and inner arm dynein I1 as described previously (Piperno et al., 1990) and was
used for purification of 20S wild-type radial spokes. All cells were grown in
liquid modified medium I under aerated photoheterotrophic growth condi-
tion and a 14/10 light/dark cycle (Witman, 1986).

Biochemistry

Axonemal Fractionation. Preparation of axonemes and KI axonemal extract;
velocity sedimentation of KI extract on sucrose gradients and two-dimen-
sional (2-D) electrophoresis of nonequilibrium isoelectric focusing followed
by SDS-PAGE (nonequilibrium pH gel electrophoresis) were carried out as
described previously (Yang et al., 2001). Blue native-PAGE was performed as
described previously (Yang et al., 2005) except that 5–10% gradient gel was
used, and electrophoresis in the cathode buffer was increased to �6 h. For
further separation in SDS-PAGE, the blue native gel lanes were excised and
then immersed in 5� SDS-PAGE sample buffer for 30 min at room tempera-
ture for protein denaturation. Subsequently, the top part of each gel strip
containing the spoke particles was inserted into a preparatory mini-gel for
standard SDS-PAGE and Western Blot.

Overlays. Overlays were performed as described previously (Gaillard et al.,
2001) with modification to detect the bound ligands indirectly by enhanced
chemiluminescence as Western blot (Yang et al., 2005). Briefly, nitrocellulose
membrane blotted with 10 �g of axoneme proteins was blocked with 5% milk
in Tris-buffered saline (TBS) for 30 min at room temperature and 10 min at
40°C. Four microliters of Ni-NTA purified RSP11–6 His (2 mg/ml) was
overlaid on the membrane in 10 ml of blocking solution for 20 min at 40°C and
1 h at 37°C. After three 5-min washes with TBS, the membrane were further

incubated with mouse anti-6 His antibody (QIAGEN, Valencia, CA) for 2 h at
37°C and then horseradish peroxidase-tagged secondary antibodies for 1 h at
room temperature.

Molecular Biology and Genetics
Reverse transcription of Chlamydomonas poly(A) RNA was carried out using
the Oligo(dT) primer and SuperScript II polymerase as suggested by the
manufacturer (Invitrogen, Carlsbad, CA). The subsequent PCR was amplified
by pfu (Stratagene, La Jolla, CA) using the primer pair with built-in NcoI and
EcoRI sites (underlined), catgccatggacgtggagccaatctt and antisense ggaattct-
cagacagccccagcttggg. The 0.6-kb product was cloned into pGEM-Teasy vector
(Promega, Madison, WI), and the identity was confirmed by sequencing. The
insert was directionally ligated into the respective restriction sites in pET28(a)
(Novagen, Madison, WI) expression vector that carries kanamycin-resistant
gene. Plasmid construct for glutathione S-transferase (GST)-RSP3 expression
under the selection of ampicillin was as described previously (Gaillard et al.,
2001). The expression constructs for tagged RSP11 alone or for both proteins
were transformed into bacteria BL21(DE3) under single- or double-antibiotic
selection. The isopropyl �-d-thiogalactoside (IPTG)-induced expression and
Ni-NTA purification under nature condition were carried out as described
previously (Yang et al., 2005).

Secondary structure and domains were predicted by the Web-available
programs PHD (Rost and Sander, 1993; http://pbil.univ-lyon1.fr/) and
SMART (Letunic et al., 2004; http://smart.embl-heidelberg.de/) with default
parameters. The BLAST server at National Center for Biotechnology Infor-
mation was used to search nucleotide and protein databases for RSP11
homologues.

Transformation Rescue. Pf25 cells were cotransformed with genomic DNA
and plasmid pSI103 that confers paromomycin resistance (Chlamydomonas
Genetics Center) using glass bead method as described previously (Nguyen et
al., 2005) with minor modification. DNA of Chlamydomonas genomic BAC
clone #1L24 (Clemson University, Clemson, SC) was purified using
PhasePrep BAC DNA kit (Sigma-Aldrich, St. Louis, MO). A 7-kb fragment
released from the BAC DNA by NotI digest was cloned into pBlueScript II KS
(Stratagene). The subclone containing RSP11 gene was confirmed by restric-
tion digest and PCR. For transformation, pf25 cells were treated with autol-
ysin at 1 � 107 cells/ml for 1–2 h until �50% cell lyses by 0.5% NP-40
treatment. Cells were gently spun down and resuspended in TAP medium at
1 � 108 cell/ml (Harris, 1988). One microgram of NotI subclone plasmid (or
�5 �g of BAC DNA), 0.5 �g of pSI103 (Chlamydomonas Genetics Center), 300
�g of glass beads, and 100 �l of 20% PEG 8000 were added into 0.3 ml of cells,
and the mixture was vortexed at speed 8 (Mini-Vortexer; VWR, West Chester,
PA) for 45 s. The cell supernatant was removed after addition of 10 ml of TAP
medium. Cell pellets were resuspended in 5 ml of TAP medium, shaken
gently under bright light for 24 h, and then plated on paromomycin (10
�g/ml)/TAP plates. Colonies forming in 4–5 d were streaked on TAP plates
for motility evaluation under light microscope.

Backcross. Mating and tetrad analysis of pf25(�) cells with wild type strain
cc125(�) were carried out as described previously (Harris, 1988, pp. 171–173
and 419–432) except that the zygotic mixture was plated on 2.5% agar plate
(A-7921; Sigma-Aldrich) for maturation and tetrad dissection.

Motility Assessment
The percentage of swimming cells was determined by observing cell culture
placed in slide chambers with three layers of scotch tapes between slide and
cover slide at 400� magnification with the Olympus compound microscope
BH-2. Focal plane was centered between glass surfaces. Swimmers and cells
with twitching flagella in random chosen fields were counted as separate
categories. The cells that stuck to glass surface were not counted. Each of the
data was derived from at least 500 cells from more than five randomly
selected fields.

For imaging, cultured cells were observed at 400� magnification using
Nikon Eclipse E600W compound microscope. The bright-field images were
digitally captured using CoolSNAP-ES digital monochrome CCD camera
(Photometrics, Tucson, AZ) and the stream mode of MetaMorph imaging
system, version 6.1r5 (Molecular Devices, Sunnyvale, CA). For measurement
of velocity, time-lapse images were taken at a rate of 10 frames/s for 20 s.
Individual cell was tracked by MetaMorph software, and the mean velocity
was derived from 20 to 30 individual swimming cells tracked from 25 to 30
sequential images at least. Statistical software program SPSS 10.0 for Win-
dows (SPSS, Chicago, IL) was used to compare the velocities.

Antibodies
Anti-RSP11 and anti-RSP8 rabbit polyclonal antibodies were raised against
Ni-NTA-purified recombinant RSP11–6 His and a synthetic cysteine tagged-
RSP8 C-terminal peptide (C-DYRYHVDLPKFTPQAK). The rabbit antibodies
against recombinant RSP16 and purified RSP3 from axoneme were described
previously (Williams et al., 1989; Yang et al., 2005).
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RESULTS

Identification of RSP11Gene
To study RSP11 and the intriguing phenotype of RSP11
mutant pf25, we first cloned the corresponding cDNA. The
cloning strategy is illustrated in Figure 1A. RSP11 was spot
purified from the 2-D gel of isolated radial spokes (Yang et
al., 2001) and subjected to tandem mass spectrometry. The
resulting two peptide sequences were used to identify ex-
pressed sequence tag (EST) clones available in the National
Center of Biotechnology Information database and the gene
in Chlamydomonas genome v.2, C_830019. Comparison of the
overlapping EST clones and genomic sequence showed that
the gene including the flanking untranslated region consists
of five exons and four introns. The theoretical pI/molecular
weight of the predicted protein is 4.5/21.5, consistent to
RSP11 spot in 2-D gel (Piperno et al., 1981; Yang et al., 2001).
PCR mapping using 3� untranslated region (UTR) sequence
indicated that RSP11 gene is located distal to molecular
markers GP52 and CNA26 on linkage group X, as antici-
pated for PF25 (http://www.chlamy.org/BAC/LG10.htm;
Kathir et al., 2003).

To confirm that PF25 encodes RSP11, transformation res-
cue of pf25 was carried out. First, BlastN search of BAC end
sequences using RSP11 gene (C_830019) flanking sequences
in scaffold _83 of Chlamydomonas genome v.2 (http://
genome.jgi-psf.org/chlre2/chlre2.home.html) identified
BAC clone #1L24 containing the entire RSP11 gene. Second,
the purified BAC DNA was cotransformed into pf25A along
with pSI103 that confers paromomycin resistance (Sizova et
al., 2001). Among 74 antibiotic-resistant transformants, four
displayed normal motility, in contrast to zero motility rescue
among 96 colonies in the control group transformed with
pSI103 only. A 7-kb NotI subclone that contains RSP11 gene
with �1.5- and 3-kb flanking sequences rescued pf25A as
well as pf25(�) with 20 and 10% cotransformation rate,
respectively (Figure 1B).

To independently test that the new protein is a radial
spoke protein, recombinant protein was synthesized for rais-
ing antibodies. The coding sequence was amplified by re-
verse transcription (RT)-PCR and inserted in frame into the
pET28(a) vector for the expression of a recombinant protein
with a C-terminal 6-His tag. The construct was confirmed by
restriction digestion and sequencing. The expression and
purification were evaluated by Coomassie protein gel (Fig-
ure 1C, left). An abundant �25-kDa His-tagged protein (ar-
rowhead) was soluble in the IPTG-induced bacterial extract
(pre) and was removed from the extract by Ni-affinity chro-
matography (post) and occurred in the imidazole elution
butter (Elute). The polyclonal antibody raised against the
recombinant protein recognized a 24-kDa band that was
present in wild-type axonemes but absent in pf14 (Figure 1C,
right; compare protein stain and Western of the same blot).

Sequencing the PCR products of �3-kb RSP11 genomic
DNA from pf25A revealed a G-to-A mutation in 5� UTR
(boxed letter in Figure 1D), resulting in a new out-of-frame
ATG preceding the original translation initiation site (un-
derlined M) and possible translation of a distinct polypep-
tide of 72 amino acids (bold letters). The mutation in pf25(�)
seemed to occur in the middle of RSP11 genes because PCR
fragments of N and C termini were normal, whereas the
region between the third and fourth exons in pf25(�) or
pf25(�) could not be amplified by either PCR or RT-PCR
despite vigorous effort and correct primer sequences.

Sequence Analysis of RSP11 and RIIa Proteins
Motif search using Web-based SMART program (Letunic et
al., 2004) revealed a RIIa domain at the N-terminal 11–53 aa
of predicted RSP11 (Figure 2). Blastp homology search with
default parameters revealed this region is highly homolo-
gous to the N terminus of the RII subunit of PKA as well as
�20-kDa proteins from diverse organisms such as the pro-
tozoan parasite Giardia (GL), Caenorhabditis elegans (CE), ze-
bra fish (DR), and mammalians. The proteins from the last
category include AKAP-binding sperm protein (ASP), rop-
porin (Fujita et al., 2000; Carr et al., 2001) as well as SP17
(Richardson et al., 1994). Homology of the predicted RSP11
with RI was not detected by Blastp. To illustrate the homol-
ogy, the N-terminal sequences from representative proteins
were aligned by Multiple Sequence Alignment and Clust-
alW (Figure 2A). The hallmark two helices in the RIIa do-
main (dashed underline) as well as the preceding �-strand
(double underline) are based on NMR structural study of RII
(Newlon et al., 2001). Consistently, PHD and other second-
ary structure prediction programs revealed a �-strand fol-
lowed by helix-turn-helix in the N terminus of RSP11 (bold
e and h, Figure 2B). Fourteen residues in RSP11 were iden-
tical or similar to the 19 aa of RII that are involved in
dimerization and contacting AKAP (Figure 2A, asterisks and
pound sign, respectively).

Among the RIIa proteins, the extreme N terminus of
RSP11 was particularly homologous to ASP and the un-
known fish and Giardia protein (arrow and overline, Figure
2A). Six of the nine residues were identical or similar, sug-
gesting closer homology among the N termini of these four
proteins. Sequence alignment of these proteins and ropporin
showed that the proteins from vertebrates are homologous
to each other largely through out the entire length of the
molecules. However, the C termini of Giardia protein and
RSP11 diverged significantly (Figure 2C).

Colocalization of RIIa Protein and AKAP in Radial
Spokes
To test the association of RSP11 and RSP3, the RII-binding
AKAP, we analyzed the axonemes of spoke mutants by
Western blots. The spoke mutants pf14, pf24, and pf17 have
different levels of structural and biochemical defects (Figure
3A), allowing localization of spoke proteins (Piperno et al.,
1981; Yang et al., 2005; reviewed by Curry and Rosenbaum,
1993). Control antibodies for RSP3 and RSP16 (gray aster-
isks) confirmed the mutant strains. As anticipated, all three
proteins were present in wild-type and central pair mutants
pf6 and pf19 but absent in pf14. RSP11 was also absent in
pf25, whereas RSP3 and RSP16 were normal (Figure 3B).

The detailed location of RSP11 is revealed by comparing
RSP11 with RSP3 and RSP16 in pf24 (Figure 3, A and B). Pf24
had a polymorphic defect encompassing spokehead and the
adjacent stalk area, but the basal end of the spokestalk was
normal (Yang et al., 2005; Figure 3A) as reflected by normal
RSP3 and diminished RSP16 (Figure 3B, arrowhead). As for
spoke AKAP but unlike RSP16, RSP11 was present at wild-
type level in pf24. To further test the colocalization, pf24
spokes were extracted by KI and fractionated by sucrose
gradient velocity sedimentation. The peak spoke fraction
was separated by native gel electrophoresis followed by 2-D
SDS-PAGE and detected by Westerns. Compared with sin-
gle intact spoke from dynein mutant (pf28pf30) and spoke-
stalk from pf17, the polymorphic pf24 spoke particles re-
vealed by RSP3 immunoblot were fractionated into three
smaller particles (Yang et al., 2005). Importantly, RSP11 al-
ways colocalized with RSP3, including in the smallest par-
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ticle (Figure 3C, arrowheads). Thus, these results indicated
that the new spoke RIIa protein and AKAP are stably lo-
cated toward the base of spokestalk, near outer doublet and
dynein motors.

Deficiency in RSP11 Does Not Affect General Assembly
and Stability of pf25 Radial Spokes
To further examine pf25 radial spokes, silver-stained 2-D
gels of wild-type and pf25 axonemes were compared (Figure
4A). The 10 major spoke proteins that can be unequivocally
identified at the acidic end of 2-D gel (labeled by numbers in
Figure 4A) were normal in pf25 except for RSP11, consistent
with a previous description (Huang et al., 1981). To test the
stability, the spokes were extracted with 0.6 M KI and frac-
tionated by sucrose gradient sedimentation. Extracted pf25
radial spokes were shown by RSP3 Western to sediment as
20S wild-type spoke particles (arrowhead), whereas the pf24
spokes unstable at the head end are smaller (Figure 4B). 2-D
gel analyses did not reveal significant difference in compo-
sition between the 20S spoke particles from pf25 and wild-
type except for RSP11 as well (our unpublished data).

Direct Association of RSP11 and RSP3
To test direct binding, RSP11 overlays were carried out.
Axonemal samples separated by SDS-PAGE were blotted to
nitrocellulose membrane. Part of the blot was overlaid with
recombinant RSP11–6 His, and binding was revealed by
anti-His and secondary antibody (Figure 4A, left). The rest
of the membrane was processed for RSP3 immunoblot (Fig-
ure 5A, right). As for PKA RII (Gaillard et al., 2001), recom-
binant RSP11 binds an �83-kDa band that is present in the
axonemes of various strains except pf14 (Figure 5A, left,
arrowhead) and comigrates with RSP3 revealed by Western
blots (Figure 5A, right).

To simulate the in vivo environment, a pull-down assay
was performed. The expression constructs for RSP11–6His
and GST-RSP3 were cotransformed into bacteria. Bacterial
supernatant was subjected to Ni-NTA affinity purification
(Figure 5B, left). The control group was transformed with
the GST-RSP3 construct only (Figure 5B, right). The recom-
binant GST-RSP3 and RSP11–6His, revealed by Coomassie
protein gel, were soluble in the extract, effectively depleted
in the flow through of the Ni-NTA matrix, and copurified in
the matrix fraction (Figure 5B, left, compare Pre, Post, and
Ni-NTA). In contrast, there was no obvious binding of GST-
RSP3 to Ni-NTA in the control lacking RSP11–6His (Figure
4B, right). GST alone also did not copurify with RSP11–6 His
(our unpublished data). Chemical cross-linking that demon-
strated direct interaction of several axonemal proteins (Yang
et al., 2001, 2005) cannot definitively reveal the interaction of
RSP11 and RSP3, possibly because of the hydrophobic inter-
action between RIIa domain and the amphipathic helix.

Unusual Motility Phenotype of RSP11 Mutant pf25
To elucidate the function of RSP11, we investigated the
motility phenotype of pf25 that was described as “swim

Ni-NTA affinity chromatography (post). The bound protein is
eluted from the affinity matrix by imidazole buffer (Elute). Western
analysis shows that the antibody raised against the recombinant
protein recognizes a single 24-kDa protein that is present in wild
type but absent in pf14 (right). The Ponceau-stained blot demon-
strates equal protein loading. (D) Sequencing of PCR product shows
that a G-to-A mutation (boxed letter) in the 5� UTR of the RSP11
gene in pf25A, resulting in an upstream ATG and an open reading
frame for a distinct polypeptide of 72-amino acid residues (bold).
The original first methionine is underlined.

Figure 1. Identification of RSP11 gene and mutant. (A) Schematic
picture depicts the strategy for identifying RSP11 gene and coding
sequence. Searching EST database in National Center for Biotech-
nology Information and Chlamydomonas genome v.2. using the func-
tion of TBlastn and the two peptide sequences (solid bars) obtained
by mass spectrometry identifies the corresponding and overlapping
EST sequences (gray bars) and predicted gene C_830019 consisting
of five exons and four introns. Untranslated regions in the first and
last exons were represented by open bar. Primer pairs with se-
quences (arrows) at 5� and 3� end of the coding sequence are used
in RT-PCR to amplify the region for creating a RSP11–6 His expres-
sion construct. (B) Rescue of two pf25 alleles by cotransformation
with RSP11 genomic DNA in a 7-kDa NotI subclone plasmid and a
plasmid conferring antibiotic resistance. (C) Antirecombinant pro-
tein recognizes a radial spoke protein of the size of RSP11. Coomas-
sie blue gel shows purification of the His-tagged recombinant pro-
teins expressed in transformed bacteria (left). A prominent 25-kDa
His-tagged recombinant protein (arrowhead) in the extract super-
natant (pre) from IPTG-induced bacteria is effectively removed by
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actively, but in an abnormal manner” (Huang et al., 1981).
Surprisingly, we initially could not distinguish wild-type
and pf25 cells taken from 8-l culture meant for axonemal
preparation (Figure 3B) under light microscopy. However,
careful observation revealed that a few cells have paralyzed
or twitching flagella. The numbers of paralyzed cells varied
among different preparations. To determine whether the
mixed motility is limited to the particular allele or caused by
spontaneous mutation, we examined the three available al-
leles, pf25A, D, and F, that were also generated by chemical
mutagens and that had been backcrossed to wild type pre-
viously (Huang et al., 1981). Consistently, all of the pf25
alleles lacked RSP11 (Figure 6A) and displayed mixed mo-
tility. Furthermore, we backcrossed pf25(�) again with wild-
type strain cc125(�). Among the 11 sets of tetrads, as illus-
trated in the representative Westerns, the ratio of pf25 and
wild-type motility phenotype was 1:1, and the former al-
ways cosegregated with RSP11 deficiency, whereas RSP16
was normal (Figure 6B). Thus, the analyses of four indepen-
dent alleles and backcrossed progeny strongly indicate the
mixed flagellar motility of pf25 is because of defective RSP11
gene.

To determine when the mixed motility develops, pf25 cells
were observed several times daily after the initial inocula-

tion. Pf25 and wild-type cells generated full-length flagella
within 2 h once cells maintained on agar plates were resus-
pended in liquid media. Interestingly, the flagella of freshly
resuspended pf25 cells predominantly were paralyzed or
twitching like other radial spoke mutants. Occasionally, one
or two cells were found tumbling or actively swimming. The
second day, most cells had twitching flagella. Some even
could circle or rotate along the longer axis of the cell body.
More cells were able to swim in the signature helical pattern
as wild type until the fourth day with cell density of �2 �
106 cells/ml. The variation of flagellar motility is illustrated
by the three panels of images taken within 1.1 s (Figure 7,
live image is shown by videomicroscopy as Supplemental
Material). The twitching flagella and the swimming cells are
highlighted with black and white arrowheads, respectively.
The trend of improvement is illustrated by increased per-
centage of swimmers and reduced percentage of cells with
twitching flagella over the 4-d period (Figure 8A). Similar
results were obtained from 16 independent cultures derived
from single colonies or by using the better buffered TAP
media (Tris-acetate-phosphate buffer listed in Harris, 1988)
(our unpublished data). The changes were not as obvious in
the same day as they were overnight.

Figure 2. Sequence analysis of
RSP11 predicted protein sequence.
(A) Sequence alignment of the RIIa
domain in RSP11, mouse RII (under-
line), and several representative
�20-kDa homologous proteins re-
vealed by Blastp search. The
�-strand, two helices and the resi-
dues binding the amphipathic helix
of AKAP (asterisks) are based on the
NMR study of RII (Banky et al., 2000;
Newlon et al., 2001). Additional ho-
mology is present at the extreme N
terminus in four of these proteins
(arrow). Listed proteins are human
ASP (AKAP-associated sperm pro-
tein; NP_114122), human ropporin
(AAG27712), human SP17 (Q15506),
GL (EAA39937; Giardia lamblia), DR
(AAH81402; zebra fish), and CE
(AAA83605; C. elegans). (B) PHD
analysis reveals that as RII, the N
terminus of RSP11 also consists of
�-strand preceding the two helices
(bold letters). (C) The C termini of
RIIa proteins diverge significantly.
ASP, ropporin, and similar proteins
from other vertebrates such as zebra
fish (DR) are homologous through-
out the entire protein, whereas the C
termini of RSP11 and the Giardia pro-
tein differ from each other and the
rest significantly.
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To test whether the acquired motility was sustained, two
4-d-old cultures were continued. Surprisingly, percentage of
swimmers was reduced dramatically as the culture reached
stationary phase the next day, even though the flagellar
length was similar (Figure 8B, white bar). On the contrary,
the control pf25 cells, transferred into equal amount of fresh
media daily, retained the motility better (black bar). Impor-

tantly, wild-type (WT) cells cultured side by side under the
same condition swim constantly (our unpublished data).

To test that medium condition determined the overall
motility, a 4-d-old 300-ml culture was divided into three
equal aliquots. One pellet was resuspended back into the
medium from which the cells were harvested, whereas the
other two pellets were transferred to fresh medium or spent
medium in which paralyzed cells from the prolonged cul-
ture had been removed. Again, 1 d later, a higher percentage
of cells in the fresh medium were swimming, whereas most
cells in the exhausted medium were paralyzed (Figure 8C).

To investigate another allele independently and to test
whether pf25 cells swim slower than wild type, the swim-
ming velocity of pf25A was measured. Like pf25(�), none of
pf25A cells in the first day are swimming in the random
sampling, but the number of swimmers gradually increased.
For those swimming with a helical path, the averaged ve-
locity improved over the next 3 d but slowed down dramat-
ically on the fifth day (Figure 9, hatched bar), consistent to
the changes in percentages (Figure 8). In contrast, wild-type
cells grown in same condition and similar density always
swam, and the velocity did not fluctuate so dramatically
(Figure 9, stippled bar). Notably, the velocity of pf25 was
equivalent to wild-type on the fourth day (Figure 9, compare
stippled and solid bars), suggesting that the deficiency in
pf25 does not significantly compromise mechanical property
of pf25 axonemes. Similarly, swimmers in day 2 culture can
be stopped by 5% viscous ProtoSlow, whereas 10% Proto-
Slow is required to stop pf25 swimmers on day 3 and slow
down pf25 swimmers and wild type equally on day 4 (our
unpublished data). Together, these results reveal that the
motility of pf25 in terms of percentages of swimmers and

Figure 3. RSP11 is a RIIa protein colocalized with RSP3 toward the
base of radial spokes. (A) Schematic (after Curry and Rosenbaum,
1993) highlighting topography of radial spokes and deficiency in
spoke mutants (dashed line) pf14, pf17, and pf24. RSP3 and RSP16
(gray asterisks) are located toward the opposite ends of the stalk
region. (B) Western analysis shows that antirecombinant RIIa pro-
tein recognizes a 24-kDa protein in the axonemes from various
Chlamydomonas strains except the spokeless mutant pf14 and RSP11
mutant pf25. Westerns of RSP3 and RSP16 (gray asterisks) verify
that RSP16 is diminished in pf24 (arrowhead), a mutant defective in
the head end of spokes, whereas RSP3 and RSP11 are normal. (C)
RSP11 and RSP3 colocalized in the defective spoke particles (arrow)
extracted from pf24. Sucrose gradient peak fractions of wild-type
spoke from dynein mutants, spokestalk from headless pf17, and
spoke particles from pf24 (Yang et al., 2005) are first fractionated in
blue native gel, followed by SDS-PAGE, and Westerns. In contrast
to wild-type spoke or pf17 spokestalk, the pf24 spokes were sepa-
rated as several distinct particles. Nonetheless, RSP11 always colo-
calized with RSP3, including the smallest particle (arrowhead). Ar-
row indicated the direction of current.

Figure 4. No obvious assembly defect in pf25 radial spokes. (A)
The radial spoke proteins (numbered) that are easily identified at
the acidic half of 2-D silver gel seem normal in pf25 except that
RSP11 is absent (arrow). Acid end is at the right side. (B) Western
blot of sucrose gradient of radial spoke extract from WT, pf24, and
pf25 cells showed that pf25 radial spokes, revealed by RSP3, sedi-
ments like the 20S WT radial spoke (arrowhead), whereas pf24
spokes are significantly smaller because of the defect at the head end
of radial spokes.
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swimming velocity is overtly sensitive to media conditions,
whereas the output potential remains intact.

In light of the well recognized effect of medium on ga-
metic differentiation (Martin and Goodenough, 1975), we
tested the hypothesis that the shift of pf25 motility is related

to the gametic differentiation induced by nitrogen depletion.
The pf25(�) cells cultured on TAP plate for a week success-
fully differentiated into gametes that mate with wild-type
cc620 (�) once resuspended in nitrogen-depleted medium
(Saito et al., 1993). However, no obvious difference in motil-
ity was observed between the gametic cells and vegetative
control cells that were resuspended in nitrogen-containing
medium in a similar manner and could not mate (our un-
published data). Most cells in both groups had flaccid or
twitching flagella, whereas a small number of cells could
swim actively. This result indicates that “the active swim-
ming in an abnormal manner” of pf25 cells that are prepared
as gametic cells freshly resuspended in nitrogen-free me-
dium (Huang et al., 1981) resembles the motility of vegeta-
tive cells in nitrogen-containing medium in the first day or
two, as shown in this study. Together, the negative results
indicate that the medium-dependent shift of motility is not
simply because of gametic differentiation.

Figure 5. RSP11 associates with RSP3, the spoke AKAP. (A) An
overlay assay using RSP11-6 His as a probe shows that RSP11 binds
an 83-kDa protein in axonemes prepared from various strains ex-
cept the RSP3 mutant, pf14 (left). The probe is revealed by anti-His
and anti-mouse antibodies. The 83-kDa protein comigrates with
RSP3 is revealed by Western blot of axoneme samples (right). (B)
Pull-down assay. GST-RSP3 (arrowheads) and RSP11–6 His (double
arrowheads) are present in the supernatant (pre) of bacteria trans-
formed with both constructs (left). Both proteins are effectively
depleted in the flow through (post) after Ni-NTA chromatography.
Pull down of the His-tagged protein results in the copurification of
GST-RSP3. In contrast, no specific binding to Ni-NTA is detectable
in the control group that expresses GST-RSP3 only (right).

Figure 6. Pf25 motility defect is tightly linked to the absence of
RSP11. (A) Western analysis of axonemes reveals that RSP11 is
absent in all of the pf25 alleles but normal in wild type and dynein
mutant pf28pf30. (B) Western blot and motility study of tetrad
meiotic progeny show a 1:1 ratio of motility phenotypes. The prog-
eny displaying pf25 motility phenotypes always lack RSP11. RSP16
Western is a control. Two representatives of the 11 complete tetrad
groups are shown.

Figure 7. Pf25 cells in the same culture demonstrate different
motility level. Three panels of bright-field microscopy taken at the
time indicated in seconds at bottom right corner show that one cell
is swimming (clear arrowhead), whereas the other has twitching
flagella (black arrowheads). The flagella of the other two cells stuck
to glass are out of focus. Motion picture that includes the three
panels is shown in the video in the Supplemental Material.
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To test whether the altered motility is because of the
restored proteins or phosphorylation, axonemes were pre-
pared from paralyzed or twitching cells freshly resuspended
from agar plates or from a 4-d-old liquid culture containing
�70% swimmers. Compared with wild-type axonemes,
RSP11 is absent and RSP8 is reduced in pf25 as stated by
Huang et al. (1981), whereas the amount of RSP16 is normal
(Figure 10A, compare first two lanes). However, there was

no significant difference between the two groups of pf25 cells
(Figure 10A, compare the second and third lanes.). Phos-
phorylation cannot account for the pf25 motility phenotype
either (Figure 10B; Huang et al., 1981). Two major phosphor-
ylated proteins, RSP2 and 3, were predominantly phosphor-
ylated in wild type, paralyzed pf25, and swimming pf25. In
contrast, more dephosphorylated RSP3 (arrowhead) was

Figure 8. Flagellar motility of pf25 cells is reversibly affected by
culture media. (A) Cultures of pf25(�) are assessed for four consec-
utive days by bright-field light microscopy after inoculation. On the
first day, few cells swim, whereas most are twitching (black bar).
The rest with immotile flagella are not included. As culture
progresses, more cells are able to swim (open bar), whereas the cells
with twitching flagella reduced until the fourth day. The percentage
is determined based on the observation of 500 counted cells at least.
(B) Most of the pf25 cells are paralyzed in the confluent culture
extended beyond the initial 4-d period (white bar). However, daily
transfer of harvested cells into fresh medium (black bar) prevents
severe decline in motility. (C) Freshness of media affects percentage
of swimmers in pf25 culture. The motility is assessed one day after
the cell aliquots from a 4-d-old liquid culture were resuspended into
300-ml fresh medium, saved 4-d-old medium or a 6-d-old exhausted
medium that paralyzed cells have been removed.

Figure 9. Pf25 cells can swim as fast as wild-type cells. The wild-
type and pf25A cells are recorded for five sequential days. No
swimming pf25 cells are found during random sampling in the first
day. The velocity of swimming pf25 cells improves over the first 4 d
and then declines in the fifth day (hatched bar). In contrast, the
swimming velocity of wild-type cells during the same period fluc-
tuates less significantly (stippled bar). The swimming velocity of
pf25 cells is slower than WT in day 2, 3, and 5 (single asterisks, p �
0.023, Student’s t test). Importantly, no significant difference be-
tween pf25 cells at the peak condition and wild-type cells (double
asterisks, p � 0.05) on the fourth day. The individual cells swim-
ming in a helical path are tracked (n � 25–30 for each data point)
and velocity determined by MetaMorph software.

Figure 10. The switches of pf25 motility are not related to changes
in defective proteins or phosphorylation state of radial spokes.
Axonemes prepared from control strains and freshly resuspended
pf25 cells with twitching flagella (tw) and pf25 liquid culture with
�70% swimmers (sw) are evaluated by Western blots. (A) Neither
RSP11 nor RSP8 is restored in the swimming pf25A cells. Compared
with wild type, RSP8 and RSP11 in the axonemes of pf25A cells are
reduced and undetectable, respectively. However, there is no sig-
nificant difference between twitching and swimming pf25 cells.
RSP16 western is a control. (B) Two major phosphorylated spoke
proteins, RSP2 and 3 in the two pf25 samples are not significantly
different from those in wild type. In contrast, RSP3 is more dephos-
phorylated (arrowhead), and both RSP2 and RSP3 are reduced in
pf27 as shown previously (Huang et al., 1981). Western blot of
dynein IC140 shows the protein loading level.
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present in pf27 that has paralyzed flagella and defective
phosphorylation and assembly of radial spokes (Huang et
al., 1981).

DISCUSSION

This study demonstrates that RSP11 gene encodes a new
RIIa protein that associates with RSP3 at the basal end of
spokestalk. These findings strongly support previous iden-
tification of RSP3 as an AKAP (Gaillard et al., 2001) albeit the
RIIa protein is not RII of PKA. Intriguingly, RSP11 mutant
displays dramatic switches of motility phenotypes as a func-
tion of medium conditions, indicating that the spoke RIIa
protein is essential for normal flagellar beating and possibly
for regulation. These findings shed new light on the com-
plexity of the regulatory mechanisms mediated by radial
spokes.

RSP11, RSP3, and the Regulatory Mechanism of Radial
Spokes
RSP11 is unequivocally an RIIa protein and pf25 is an RSP11
mutant based on the following evidence. 1) The sequence
founded on mass spectrometry polypeptides from spot-pu-
rified RSP11 of isolated radial spokes predicts an RIIa pro-
tein consistent to the size and pI of RSP11. 2) Mapping with
3� UTR sequence indicates that RSP11 gene is located distal
to molecular markers GP52 and CNA26 in the linkage group
X, consistent with the predicted location of PF25. 3) RSP11
gene rescues pf25. 4) Antibodies raised against the recombi-
nant RIIa protein recognize a 24-kDa protein that is present
in all of the strains tested except pf14 and pf25. 5) Sequencing
of genomic DNA reveals a point mutation at 5� UTR of
pf25A. 6) Dikaryon rescue of pf25 shows that pf25 cells syn-
thesize all of the spoke proteins except RSP11 (Huang et al.,
1981). As predicted, RSP11 binds to spoke AKAP. Mutant
analyses and biochemical extraction further indicates that
both proteins colocalize toward the base of spokestalk in
axonemes (Figures 3 and 5).

The finding of non-PKA RIIa protein in radial spokes is
unexpected. Diverse evidence suggests that radial spokes
control dynein activity through phosphoenzymes, including
PKA (reviewed by Porter and Sale, 2000), and RSP3 binds
PKA RII in vitro (Gaillard et al., 2001). Rather, this study
demonstrated that RSP3 binds RSP11, a non-PKA RIIa pro-
tein and that phosphorylation seems unrelated to pf25 ab-
normally regulated motility, suggesting that RSP3/RSP11
mediate a non-PKA regulatory mechanism. One interpreta-
tion is that RSP3 does not bind PKA or mediate cAMP-
dependent regulation and that PKA pathway is mediated by
other mechanisms.

However, equally possible is that in addition to RSP11,
RSP3 may bind RII and/or other RIIa proteins. Dual-specific
AKAPs interact with multiple RIIa proteins. Emerging evi-
dence indicates that the association could be reversible and
modulated. For example, fibrous sheath AKAP3 binds RI,
RII, CABYR, SP17, ASP, and ropporin (Carr et al., 2001;
Naaby-Hansen et al., 2002; Lea et al., 2004; reviewed by Eddy
et al., 2003), and phosphorylation increases its binding to
RII� and PKA recruitment (Luconi et al., 2004). In addition,
the RIIa domains from various proteins are not equivalent in
AKAP binding. The regions N terminal to RIIa domains in
RI and RII assume distinct secondary structures (Banky et al.,
2000) that may account for the different affinity and binding
sites for RI and RII on dual-specific AKAPs (Huang et al.,
1997; Burns-Hamuro et al., 2004; Salvador et al., 2004). The
RIIa domains of RSP11, ASP, and Giardia protein but not RII
share stronger similarity (Figure 2), suggesting that RSP11

may not share the mapped binding sites for RII (Gaillard et
al., 2001). It will be interesting to test whether RSP3 is a
dual-specific AKAP as well. Both hypotheses support the
central concept that RSP3, as a spoke AKAP, anchors regu-
latory pathways to the spoke complex and near dynein
motors (Gaillard et al., 2001).

The Molecular Interaction of RSP11
Pf25 is the only known spoke mutant that does not have
morphological defect and is capable of swimming (Huang et
al., 1981). The limited defect in RSP11 and RSP8 indicates
that these two constitutive components are not essential for
the assembly and the core structure of the T-shaped complex
that consists of �23 proteins (Yang et al., 2001). Rather, they
may be peripheral functional components. The indirect
overlay and effective pull-down of RSP3 by RSP11 affinity
(Figure 5) suggest that the affinity is likely equivalent to
RII/AKAP affinity that suffices RII overlays and the purifi-
cation of an oligomeric complex (Lohmann et al., 1984; Breg-
man et al., 1989). However, similar to the challenge of study-
ing fibrous sheath AKAPs, the extreme stability of
cytoskeletal structure and the central role of RSP3 in the
assembly of radial spokes prevent further purification of
RSP11/RSP3 complex. Nonetheless, the colocalization of
both proteins in the basal part of the spokestalk from pf24
mutants (Figure 3) is equivalent to or exceeds the current
resolution of immunoprecipitation or immunolocalization of
RIIa proteins and AKAPs in flagellar compartments (Carr et
al., 2001; Lea et al., 2004; Rawe et al., 2004).

Despite the high affinity, RSP3 may not be the sole protein
that harnesses RSP11 to the structural complex. Instead, the
reduction of RSP8 in pf25 (Figure 10; Huang et al., 1981)
suggests that RSP8 interacts with RSP11, most likely its C
terminus, as well. The defective interactions among the three
proteins likely account for the abnormally regulated motility
of pf25.

To Beat or Not to Beat of Pf25 Flagella
The pf25 phenotype reveals the functional significance of
RSP11 and possibly a novel regulatory mechanism that is
not obvious in wild-type Chlamydomonas. The motility of
pf25 is unique in two aspects. 1) Pf25 cells display a spectrum
of motility in the same culture. The paralysis state resembles
the other spoke mutants that have flaccid or twitching fla-
gella correlated with gross structural defects. In contrast,
pf25 cells originated from the same colony in a few days can
swim like wild-type cells and then become paralyzed again.
2) The dramatic swing in overall motility level occurs during
regular culture period, depending on how fresh (or how old)
the medium is.

To our knowledge, until this study, the flagellar motility
of wild-type and mutant strains during the culture period
had not changed significantly enough to inspire investiga-
tion. Wild-type Chlamydomonas cells seem to swim con-
stantly in a smooth helical path (Harris, 1988) without ob-
vious changes in motility (Figure 9) unless physical stimuli
transiently alter flagellar beating (see below). Most of the
motility mutants are generated by mutagens, X-rays, or in-
sertional mutagenesis and have stable single phenotypes as
anticipated. Mutations in motors or other axonemal com-
plexes are manifested as reduced swimming velocity, differ-
ent beating patterns, or swimming path or paralysis (Huang
et al., 1981; Brokaw and Kamiya, 1987; Perrone et al., 2000).
Mutants screened for defective signaling pathways (Pazour
et al., 1995) fail to respond to stimuli without affect normal
flagellar beating. Regardless of the severities of motility
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defects or nature of mutation, no reports have indicated shift
of mixed motility as pf25.

It is not clear what causes the reversible switches. The
switches seem different from the changes induced by second
messengers. Light elicits phototaxis or photoshock is medi-
ated by transient fluctuation of intraflagellar Ca2�, maybe
partly through radial spokes (Schmidt and Eckert, 1976;
Bessen et al., 1980; Brokaw et al., 1982; Kamiya and Witman,
1984). Reagents that increase cAMP concentration or cAMP
analogues inhibit Chlamydomonas flagellar motility, although
the physiological relevance is not clear (Rubin and Filner,
1973; Hasegawa et al., 1987). Notably, these reactions occur
within milliseconds to minutes, whereas effects of medium
on pf25 cells are more noticeable overnight and are observed
in portions of population instead of every cell. Furthermore,
twitching flagella or tumbling cells seem to be a transitional
stage between paralysis and wild-type swimming. There-
fore, the regulatory mechanism that becomes obvious in the
absence of RSP11 differs from the on-off responses induced
by cAMP and calcium. Rather, reactions within cell body
may be involved. Consistent to this interpretation, attempts
to rescue the paralyzed pf25 cells by changing concentration
of the second messengers and broad-spectrum inhibitors to
kinase activated by second messengers have not succeeded.
Neither can adjusting pH nor using the stronger buffered
TAP medium change pf25 motility phenotypes (our unpub-
lished data).

Additional mutation or selection of subpopulation of cells
is ruled out because of the reversibility, cultures from single
colonies and tight correlation of genetic and motility pheno-
types among backcrossed progeny (Figures 6–9). Normal
ultrastructure and composition, stability of spoke complex
(Huang et al., 1981; Figure 4 and 5), and the wild-type like
velocity and smooth helical path strongly suggest that the
mechanism of pf25 radial spokes and axonemes is largely
intact. The simplest explanation is that the pf25 is as capable
as wild type in flagellar beating, but an abnormal regulatory
mechanism shuts down the beating in the unfavorable con-
ditions. Paradoxically, the gain of sensitivity is because of
loss of spoke RIIa protein. Conceivably, the heightened sen-
sitivity could be because of a misplaced regulatory protein
that normally associates with RSP11 or RSP8. Or, the regu-
lator normally suppressed by RSP11 becomes active in pf25
flagella. Alternatively, other proteins that normally do not
associate with RSP3 become accessible to RSP11 binding site
when RSP11 is absent, albeit with lower affinity. Regardless
the detail mechanism, the reversible nature of pf25 pheno-
type supports the postulated chemical signal transduction
mediated by radial spokes.

Non-PKA RIIa Proteins
Previous studies have shown that non-PKA RIIa proteins are
abundant in sperm and hence suggest that they are unique
to male germ cells (Carr et al., 2001). RSP11/RSP3 complex in
the typical feature of 9 � 2 cilia and flagella argues other-
wise. Although RSP11 orthologues cannot be identified de-
finitively, EST sequences homologous to RSP3 are present in
different tissues in mammals and other organisms, including
vertebrates, insects, Ciona (Gaillard et al., 2001; Koukoulas et
al., 2004), and Giardia. The extensive homology suggests that
RSP3 is conserved to target the radial spoke (Huang et al.,
1981; Diener et al., 1993) as well as RIIa proteins. Thus,
RIIa/RSP3 is likely a common feature of 9 � 2 cilia and
flagella. In line with this prediction is the detection of one
RIIa protein, SP17, in various tissues, notably in cilia as well
(Frayne and Hall, 2002; Grizzi et al., 2004).

Despite the divergence, the C termini of RIIa proteins
(Figure 2C) may confer special regulatory mechanism tai-
lored for individual cell types. For example, CABYR (fi-
brousheathin II; AAC35373) may mediate calcium-depen-
dent regulatory pathways via their EF-hand for calcium
binding (Naaby-Hansen et al., 2002), whereas SP17 (Q15506)
uses its calcium/calmodulin-binding IQ motifs (Lea et al.,
2004). The C-terminal peptide of ropporin lacks recognizable
modules but still associates with rhophilin, a Rho-binding
protein (Nakamura et al., 1999; Fujita et al., 2000). Further
study on the C terminus of RSP11 likely will reveal the new
regulatory mechanism of radial spokes and nonconventional
AKAPs.

The suppressor mutants inspired the hypothesis that the
radial spoke is part of a system that controls flagellar motil-
ity (Huang et al., 1982). This study provides the in vivo
evidence supporting the hypothesis and reveals a spoke
non-PKA RIIa protein possibly mediating a new regulatory
mechanism in diverse cilia and flagella. The evidence in
green algae and the broad presence of non-PKA RIIa pro-
teins sharing the targeting domain of PKA in eukaryotes
indicate that they are not evolutionary mishaps or specially
evolved for male germ cells. Rather, they should be consid-
ered as part of the growing repertoire of the diverse regu-
latory pathways that AKAPs may integrate.
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