3 research outputs found

    A Family of Carbon-Based Nanocomposite Tubular Structures Created by <i>in Situ</i> Electron Beam Irradiation

    No full text
    We report a unique approach for the fabrication of a family of curling tubular nanostructures rapidly created by a rolling up of carbon membranes under <i>in situ</i> TEM electron beam irradiation. Multiwall tubes can also be created if irradiation by electron beam is performed long enough. This general approach can be extended to curve the conductive carbon film loaded with various functional nanomaterials, such as nanocrystals, nanorods, nanowires, and nanosheets, providing a unique strategy to make composite tubular structures and composite materials by a combination of desired optical, electronic, and magnetic properties, which could find potential applications, including fluid transportation, encapsulation, and capillarity on the nanometer scale

    Highly Stimuli-Responsive Au Nanorods/Poly(<i>N</i>‑isopropylacrylamide) (PNIPAM) Composite Hydrogel for Smart Switch

    No full text
    To achieve both fast response and structural integrity during the repeating volume changes are the most significant challenges for thermoresponsive hydrogels. In this work, AuNRs/PNIPAM composite hydrogel with fast thermal/optical response and structural integrity is facilely prepared by electrospinning and following a curing treatment. By combining the photothermal property of AuNRs and thermal-responsive effect of PNIPAM, the composite hydrogel shows fast thermal/photoresponse, high heating rate, and high structural integrity with fierce size change. When laser irradiation begins, the temperature of the film increases from room temperature to 34.5 °C in 1 s and will further increase even to 60 °C in 5 s. Both the porous structure of the hydrogel and the assemble effect of AuNRs within the PNIPAM fibers facilitate the fast responsibility. Furthermore, to take advantage of this fibrous hydrogel adequately, one novel kind of thermal/photocontrolled switch based on the composite hydrogel is prepared, which exhibits fast responsivity and high stability even under acidic or basic conditions

    Highly Stimuli-Responsive Au Nanorods/Poly(<i>N</i>‑isopropylacrylamide) (PNIPAM) Composite Hydrogel for Smart Switch

    No full text
    To achieve both fast response and structural integrity during the repeating volume changes are the most significant challenges for thermoresponsive hydrogels. In this work, AuNRs/PNIPAM composite hydrogel with fast thermal/optical response and structural integrity is facilely prepared by electrospinning and following a curing treatment. By combining the photothermal property of AuNRs and thermal-responsive effect of PNIPAM, the composite hydrogel shows fast thermal/photoresponse, high heating rate, and high structural integrity with fierce size change. When laser irradiation begins, the temperature of the film increases from room temperature to 34.5 °C in 1 s and will further increase even to 60 °C in 5 s. Both the porous structure of the hydrogel and the assemble effect of AuNRs within the PNIPAM fibers facilitate the fast responsibility. Furthermore, to take advantage of this fibrous hydrogel adequately, one novel kind of thermal/photocontrolled switch based on the composite hydrogel is prepared, which exhibits fast responsivity and high stability even under acidic or basic conditions
    corecore