2,746 research outputs found

    Classical and quantum regimes of two-dimensional turbulence in trapped Bose-Einstein condensates

    Full text link
    We investigate two-dimensional turbulence in finite-temperature trapped Bose-Einstein condensates within damped Gross-Pitaevskii theory. Turbulence is produced via circular motion of a Gaussian potential barrier stirring the condensate. We systematically explore a range of stirring parameters and identify three regimes, characterized by the injection of distinct quantum vortex structures into the condensate: (A) periodic vortex dipole injection, (B) irregular injection of a mixture of vortex dipoles and co-rotating vortex clusters, and (C) continuous injection of oblique solitons that decay into vortex dipoles. Spectral analysis of the kinetic energy associated with vortices reveals that regime (B) can intermittently exhibit a Kolmogorov k−5/3k^{-5/3} power law over almost a decade of length or wavenumber (kk) scales. The kinetic energy spectrum of regime (C) exhibits a clear k−3/2k^{-3/2} power law associated with an inertial range for weak-wave turbulence, and a k−7/2k^{-7/2} power law for high wavenumbers. We thus identify distinct regimes of forcing for generating either two-dimensional quantum turbulence or classical weak-wave turbulence that may be realizable experimentally.Comment: 11 pages, 10 figures. Minor updates to text and figures 1, 2 and

    Evaporative cooling of trapped fermionic atoms

    Full text link
    We propose an efficient mechanism for the evaporative cooling of trapped fermions directly into quantum degeneracy. Our idea is based on an electric field induced elastic interaction between trapped atoms in spin symmetric states. We discuss some novel general features of fermionic evaporative cooling and present numerical studies demonstrating the feasibility for the cooling of alkali metal fermionic species 6^6Li, 40^{40}K, and 82,84,86^{82,84,86}Rb. We also discuss the sympathetic cooling of fermionic hyperfine spin mixtures, including the effects of anisotropic interactions.Comment: to be publishe

    Quantum Limits of Stochastic Cooling of a Bosonic Gas

    Full text link
    The quantum limits of stochastic cooling of trapped atoms are studied. The energy subtraction due to the applied feedback is shown to contain an additional noise term due to atom-number fluctuations in the feedback region. This novel effect is shown to dominate the cooling efficiency near the condensation point. Furthermore, we show first results that indicate that Bose--Einstein condensation could be reached via stochastic cooling.Comment: 5 pages, 3 figures, to appear in Phys. Rev.

    Low energy atomic collision with dipole interactions

    Get PDF
    We apply quantum defect theory to study low energy ground state atomic collisions including aligned dipole interactions such as those induced by an electric field. Our results show that coupled even (ll) relative orbital angular momentum partial wave channels exhibit shape resonance structures while odd (ll) channels do not. We analyze and interpret these resonances within the framework of multichannel quantum defect theory (MQDT).Comment: 27 pages, 17 figures, an inadvertent typo correcte

    SIGMA: A System for Integrative Genomic Microarray Analysis of Cancer Genomes

    Get PDF
    BACKGROUND: The prevalence of high resolution profiling of genomes has created a need for the integrative analysis of information generated from multiple methodologies and platforms. Although the majority of data in the public domain are gene expression profiles, and expression analysis software are available, the increase of array CGH studies has enabled integration of high throughput genomic and gene expression datasets. However, tools for direct mining and analysis of array CGH data are limited. Hence, there is a great need for analytical and display software tailored to cross platform integrative analysis of cancer genomes. RESULTS: We have created a user-friendly java application to facilitate sophisticated visualization and analysis such as cross-tumor and cross-platform comparisons. To demonstrate the utility of this software, we assembled array CGH data representing Affymetrix SNP chip, Stanford cDNA arrays and whole genome tiling path array platforms for cross comparison. This cancer genome database contains 267 profiles from commonly used cancer cell lines representing 14 different tissue types. CONCLUSION: In this study we have developed an application for the visualization and analysis of data from high resolution array CGH platforms that can be adapted for analysis of multiple types of high throughput genomic datasets. Furthermore, we invite researchers using array CGH technology to deposit both their raw and processed data, as this will be a continually expanding database of cancer genomes. This publicly available resource, the System for Integrative Genomic Microarray Analysis (SIGMA) of cancer genomes, can be accessed at

    Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities

    Get PDF
    We study the mutual interaction of a Bose-Einstein condensed gas with a single mode of a high-finesse optical cavity. We show how the cavity transmission reflects condensate properties and calculate the self-consistent intra-cavity light field and condensate evolution. Solving the coupled condensate-cavity equations we find that while falling through the cavity, the condensate is adiabatically transfered into the ground state of the periodic optical potential. This allows time dependent non-destructive measurements on Bose-Einstein condensates with intriguing prospects for subsequent controlled manipulation.Comment: 5 pages, 5 figures; revised version: added reference

    Optical Confinement of a Bose-Einstein Condensate

    Full text link
    Bose-Einstein condensates of sodium atoms have been confined in an optical dipole trap using a single focused infrared laser beam. This eliminates the restrictions of magnetic traps for further studies of atom lasers and Bose-Einstein condensates. More than five million condensed atoms were transferred into the optical trap. Densities of up to 3×1015cm−33 \times 10^{15} cm^{-3} of Bose condensed atoms were obtained, allowing for a measurement of the three-body decay rate constant for sodium condensates as K3=(1.1±0.3)×10−30cm6s−1K_3 = (1.1 \pm 0.3) \times 10^{-30} cm^6 s^{-1}. At lower densities, the observed 1/e lifetime was more than 10 sec. Simultaneous confinement of Bose-Einstein condensates in several hyperfine states was demonstrated.Comment: 5 pages, 4 figure

    Severe Retinopathy of Prematurity Is Not Independently Associated With Worse Neurodevelopmental Outcomes in Preterm Neonates

    Get PDF
    Purpose: To evaluate the relationship between retinopathy of prematurity (ROP) severity and neurodevelopmental outcomes in premature neonates at 0–36 months corrected age.Methods: A retrospective chart review was performed on 228 neonates screened for ROP at the UCLA Mattel Children's Hospital between 2011 and 2018. Demographic information, clinical outcomes, ROP severity (no ROP, type 1 ROP, type 2 ROP), and Bayley-III neurodevelopmental scores were collected. Infants were grouped into corrected age cohorts (0–12, 12–24, and 24–36 months) to assess neurodevelopmental outcomes with increasing age. Within each age cohort, ANOVA and Chi-Square testing were used to detect differences in birth characteristics and neurodevelopmental scores between infants with type 1 ROP, type 2 ROP, or no ROP. Univariable analyses assessed the relationship between ROP severity and neurodevelopmental outcomes within each age cohort. A multivariable analysis was then performed to determine if ROP severity remained significantly associated with worse neurodevelopmental scores after controlling for birth weight (BW), intraventricular hemorrhage grade (IVH), health insurance type, male sex, and age at Bayley testing.Results: Without controlling for factors associated with prematurity, neonates with type 1 ROP had poorer cognition (p = 0.001) and motor (p = 0.006) scores at ages 0–12 months and poorer cognition (p = 0.01), language (p = 0.04) and motor (p = 0.04) scores at ages 12–24 months than infants without ROP, but no significant differences were detected at ages 24–36 months. After adjusting for BW, IVH, insurance type, male sex, and age at Bayley testing, ROP severity was no longer associated with worse neurodevelopmental scores in any domain.Conclusion: This study emphasizes that poorer neurodevelopmental outcomes in preterm neonates are most likely related to lower birthweight, associated co-morbidities of prematurity, and socioeconomic factors such as health insurance, not severity of ROP itself
    • …
    corecore