10 research outputs found

    Identifying Crystallization- and Incorporation-Limited Regimes during Vapor–Liquid–Solid Growth of Si Nanowires

    No full text
    The vapor–liquid–solid (VLS) mechanism is widely used for the synthesis of semiconductor nanowires (NWs), yet several aspects of the mechanism are not fully understood. Here, we present comprehensive experimental measurements on the growth rate of Au-catalyzed Si NWs over a range of temperatures (365–480 °C), diameters (30–200 nm), and pressures (0.1–1.6 Torr SiH<sub>4</sub>). We develop a kinetic model of VLS growth that includes (1) Si incorporation into the liquid Au–Si catalyst, (2) Si evaporation from the catalyst surface, and (3) Si crystallization at the catalyst–NW interface. This simple model quantitatively explains growth rate data collected over more than 65 distinct synthetic conditions. Surprisingly, upon increasing the temperature and/or pressure, the analysis reveals an abrupt transition from a diameter-independent growth rate that is limited by incorporation to a diameter-dependent growth rate that is limited by crystallization. The identification of two distinct growth regimes provides insight into the synthetic conditions needed for specific NW-based technologies, and our kinetic model provides a straightforward framework for understanding VLS growth with a range of metal catalysts and semiconductor materials

    Waveguide Scattering Microscopy for Dark-Field Imaging and Spectroscopy of Photonic Nanostructures

    No full text
    Dark-field microscopy (DFM) is widely used to optically image and spectroscopically analyze nanoscale objects. In a typical DFM configuration, a sample is illuminated at oblique angles and an objective lens collects light scattered by the sample at a range of lower angles. Here, we develop waveguide scattering microscopy (WSM) as an alternative technique to image and analyze photonic nanostructures. WSM uses an incoherent white-light source coupled to a dielectric slab waveguide to generate an evanescent field that illuminates objects located within several hundred nanometers of the waveguide surface. Using standard microscope slides or coverslips as the waveguide, we demonstrate high-contrast dark-field imaging of nanophotonic and plasmonic structures such as Si nanowires, Au nanorods, and Ag nanoholes. Scattering spectra collected in the WSM configuration show excellent signal-to-noise with minimal background signal compared to conventional DFM. In addition, the polarization of the incident field is controlled by the direction of the propagating wave, providing a straightforward route to excite specific optical modes in anisotropic nanostructures by selecting the appropriate input wavevector. Considering the facile integration of WSM with standard microscopy equipment, we anticipate it will become a versatile tool for characterizing photonic nanostructures

    Encoding Abrupt and Uniform Dopant Profiles in Vapor–Liquid–Solid Nanowires by Suppressing the Reservoir Effect of the Liquid Catalyst

    No full text
    Semiconductor nanowires (NWs) are often synthesized by the vapor–liquid–solid (VLS) mechanism, a process in which a liquid dropletsupplied with precursors in the vapor phasecatalyzes the growth of a solid, crystalline NW. By changing the supply of precursors, the NW composition can be altered as it grows to create axial heterostructures, which are applicable to a range of technologies. The abruptness of the heterojunction is mediated by the liquid catalyst, which can act as a reservoir of material and impose a lower limit on the junction width. Here, we demonstrate that this “reservoir effect” is not a fundamental limitation and can be suppressed by selection of specific VLS reaction conditions. For Au-catalyzed Si NWs doped with P, we evaluate dopant profiles under a variety of synthetic conditions using a combination of elemental imaging with energy-dispersive X-ray spectroscopy and dopant-dependent wet-chemical etching. We observe a diameter-dependent reservoir effect under most conditions. However, at sufficiently slow NW growth rates (≤250 nm/min) and low reactor pressures (≤40 Torr), the dopant profiles are diameter independent and radially uniform with abrupt, sub-10 nm axial transitions. A kinetic model of NW doping, including the microscopic processes of (1) P incorporation into the liquid catalyst, (2) P evaporation from the catalyst, and (3) P crystallization in the Si NW, quantitatively explains the results and shows that suppression of the reservoir effect can be achieved when P evaporation is much faster than P crystallization. We expect similar reaction conditions can be developed for other NW systems and will facilitate the development of NW-based technologies that require uniform and abrupt heterostructures

    Synthetically Encoding 10 nm Morphology in Silicon Nanowires

    No full text
    Si nanowires (NWs) have been widely explored as a platform for photonic and electronic technologies. Here, we report a bottom-up method to break the conventional “wire” symmetry and synthetically encode a high-resolution array of arbitrary shapes, including nanorods, sinusoids, bowties, tapers, nanogaps, and gratings, along the NW growth axis. Rapid modulation of phosphorus doping combined with selective wet-chemical etching enabled morphological features as small as 10 nm to be patterned over wires more than 50 μm in length. This capability fundamentally expands the set of technologies that can be realized with Si NWs, and as proof-of-concept, we demonstrate two distinct applications. First, nanogap-encoded NWs were used as templates for Noble metals, yielding plasmonic structures with tunable resonances for surface-enhanced Raman imaging. Second, core/shell Si/SiO<sub>2</sub> nanorods were integrated into electronic devices that exhibit resistive switching, enabling nonvolatile memory storage. Moving beyond these initial examples, we envision this method will become a generic route to encode new functionality in semiconductor NWs

    Reversible Strain-Induced Electron–Hole Recombination in Silicon Nanowires Observed with Femtosecond Pump–Probe Microscopy

    No full text
    Strain-induced changes to the electronic structure of nanoscale materials provide a promising avenue for expanding the optoelectronic functionality of semiconductor nanostructures in device applications. Here we use pump–probe microscopy with femtosecond temporal resolution and submicron spatial resolution to characterize charge–carrier recombination and transport dynamics in silicon nanowires (NWs) locally strained by bending deformation. The electron–hole recombination rate increases with strain for values above a threshold of ∼1% and, in highly strained (∼5%) regions of the NW, increases 6-fold. The changes in recombination rate are independent of NW diameter and reversible upon reduction of the applied strain, indicating the effect originates from alterations to the NW bulk electronic structure rather than introduction of defects. The results highlight the strong relationship between strain, electronic structure, and charge–carrier dynamics in low-dimensional semiconductor systems, and we anticipate the results will assist the development of strain-enabled optoelectronic devices with indirect-bandgap materials such as silicon

    Probing Intrawire, Interwire, and Diameter-Dependent Variations in Silicon Nanowire Surface Trap Density with Pump–Probe Microscopy

    No full text
    Surface trap density in silicon nanowires (NWs) plays a key role in the performance of many semiconductor NW-based devices. We use pump–probe microscopy to characterize the surface recombination dynamics on a point-by-point basis in 301 silicon NWs grown using the vapor–liquid–solid (VLS) method. The surface recombination velocity (<i>S</i>), a metric of the surface quality that is directly proportional to trap density, is determined by the relationship <i>S</i> = <i>d</i>/4τ from measurements of the recombination lifetime (τ) and NW diameter (<i>d</i>) at distinct spatial locations in individual NWs. We find that <i>S</i> varies by as much as 2 orders of magnitude between NWs grown at the same time but varies only by a factor of 2 or three within an individual NW. Although we find that, as expected, smaller-diameter NWs exhibit shorter τ, we also find that smaller wires exhibit higher values of <i>S</i>; this indicates that τ is shorter both because of the geometrical effect of smaller <i>d</i> and because of a poorer quality surface. These results highlight the need to consider interwire heterogeneity as well as diameter-dependent surface effects when fabricating NW-based devices

    Capillarity-Driven Welding of Semiconductor Nanowires for Crystalline and Electrically Ohmic Junctions

    No full text
    Semiconductor nanowires (NWs) have been demonstrated as a potential platform for a wide-range of technologies, yet a method to interconnect functionally encoded NWs has remained a challenge. Here, we report a simple capillarity-driven and self-limited welding process that forms mechanically robust and Ohmic inter-NW connections. The process occurs at the point-of-contact between two NWs at temperatures 400–600 °C below the bulk melting point of the semiconductor. It can be explained by capillarity-driven surface diffusion, inducing a localized geometrical rearrangement that reduces spatial curvature. The resulting weld comprises two fused NWs separated by a single, Ohmic grain boundary. We expect the welding mechanism to be generic for all types of NWs and to enable the development of complex interconnected networks for neuromorphic computation, battery and solar cell electrodes, and bioelectronic scaffolds

    Ultrafast Carrier Dynamics of Silicon Nanowire Ensembles: The Impact of Geometrical Heterogeneity on Charge Carrier Lifetime

    No full text
    Ultrafast carrier dynamics in silicon nanowires with average diameters of 40, 50, 60, and 100 nm were studied with transient absorption spectroscopy. After 388 nm photoexcitation near the direct band gap of silicon, broadband spectra from 400 to 800 nm were collected between 200 fs and 1.3 ns. The transient spectra exhibited both absorptive and bleach features that evolved on multiple time scales, reflecting contributions from carrier thermalization and recombination as well as transient shifts of the ground-state absorption spectrum. The initially formed “hot” carriers relaxed to the band edge within the first ∼300 fs, followed by recombination over several hundreds of picoseconds. The charge carrier lifetime progressively decreased with decreasing diameter, a result consistent with a surface-mediated recombination process. Recombination dynamics were quantitatively modeled using the diameter distribution measured from each sample, and this analysis yielded a consistent surface recombination velocity of ∼2 × 10<sup>4</sup> cm/s across all samples. The results indicate that transient absorption spectroscopy, which interrogates thousands of individual nanostructures simultaneously, can be an accurate probe of material parameters in inhomogeneous semiconductor samples when geometrical differences within the ensemble are properly analyzed

    Imaging Charge Separation and Carrier Recombination in Nanowire p‑i‑n Junctions Using Ultrafast Microscopy

    No full text
    Silicon nanowires incorporating p-type/n-type (p-n) junctions have been introduced as basic building blocks for future nanoscale electronic components. Controlling charge flow through these doped nanostructures is central to their function, yet our understanding of this process is inferred from measurements that average over entire structures or integrate over long times. Here, we have used femtosecond pump–probe microscopy to directly image the dynamics of photogenerated charge carriers in silicon nanowires encoded with p-n junctions along the growth axis. Initially, motion is dictated by carrier–carrier interactions, resulting in diffusive spreading of the neutral electron–hole cloud. Charge separation occurs at longer times as the carrier distribution reaches the edges of the depletion region, leading to a persistent electron population in the n-type region. Time-resolved visualization of the carrier dynamics yields clear, direct information on fundamental drift, diffusion, and recombination processes in these systems, providing a powerful tool for understanding and improving materials for nanotechnology

    Imaging Charge Separation and Carrier Recombination in Nanowire p‑i‑n Junctions Using Ultrafast Microscopy

    No full text
    Silicon nanowires incorporating p-type/n-type (p-n) junctions have been introduced as basic building blocks for future nanoscale electronic components. Controlling charge flow through these doped nanostructures is central to their function, yet our understanding of this process is inferred from measurements that average over entire structures or integrate over long times. Here, we have used femtosecond pump–probe microscopy to directly image the dynamics of photogenerated charge carriers in silicon nanowires encoded with p-n junctions along the growth axis. Initially, motion is dictated by carrier–carrier interactions, resulting in diffusive spreading of the neutral electron–hole cloud. Charge separation occurs at longer times as the carrier distribution reaches the edges of the depletion region, leading to a persistent electron population in the n-type region. Time-resolved visualization of the carrier dynamics yields clear, direct information on fundamental drift, diffusion, and recombination processes in these systems, providing a powerful tool for understanding and improving materials for nanotechnology
    corecore