26 research outputs found

    Clinical Remission in Severe Asthma : A Pooled Post hoc Analysis of the Patient Journey with Benralizumab

    Get PDF
    Funding This study, the Rapid Service Fee, and the Open Access Fee were funded by AstraZeneca (Gaithersburg, MD, USA).Peer reviewedPublisher PD

    A Response to : Letter to the Editor Regarding “Clinical Remission in Severe Asthma: A Pooled Post Hoc Analysis of the Patient Journey with Benralizumab”

    Get PDF
    Funding Information: No funding or sponsorship was received for the publication of this article. Medical writing support was provided by Dan Jackson, Ph.D., CMPP (CiTRUS Health Group), and was funded by AstraZeneca (Cambridge, UK) in accordance with Good Publication Practice (GPP3) guidelines. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published. Andrew Menzies-Gow developed the outline and content of the response letter and commented on previous versions of the manuscript. All authors read and approved the final manuscript. Andrew Menzies-Gow has attended advisory boards for AstraZeneca, GlaxoSmithKline, Novartis, Sanofi, and Teva; has received speaker fees from AstraZeneca, Novartis, Sanofi, and Teva; has participated in research with AstraZeneca for which his institution has been remunerated and has attended international conferences with Teva; and has had consultancy agreements with AstraZeneca and Sanofi. Flavia L. Hoyte has attended advisory boards for AstraZeneca; has received speaker fees from AstraZeneca and GlaxoSmithKline; and has participated in research sponsored by AstraZeneca, GlaxoSmithKline, Genentech, Teva, Sanofi, and the National Institute of Allergy and Infectious Diseases (NIAID), for which her institution has been remunerated. David B. Price has board membership with AstraZeneca, Boehringer Ingelheim, Chiesi, Mylan, Novartis, Regeneron Pharmaceuticals, Sanofi Genzyme, and Thermofisher; consultancy agreements with Airway Vista Secretariat, AstraZeneca, Boehringer Ingelheim, Chiesi, EPG Communication Holdings Ltd, FIECON Ltd, Fieldwork International, GlaxoSmithKline, Mylan, Mundipharma, Novartis, OM Pharma SA, PeerVoice, Phadia AB, Spirosure Inc, Strategic North Limited, Synapse Research Management Partners S.L., Talos Health Solutions, Theravance, and WebMD Global LLC; grants and unrestricted funding for investigator-initiated studies (conducted through Observational and Pragmatic Research Institute Pte Ltd) from AstraZeneca, Boehringer Ingelheim, Chiesi, Mylan, Novartis, Regeneron Pharmaceuticals, Respiratory Effectiveness Group, Sanofi Genzyme, Theravance, and the UK National Health Service; received payment for lectures/speaking engagements from AstraZeneca, Boehringer Ingelheim, Chiesi, Cipla, GlaxoSmithKline, Kyorin, Mylan, Mundipharma, Novartis, Regeneron Pharmaceuticals, and Sanofi Genzyme; received payment for travel/accommodation/meeting expenses from AstraZeneca, Boehringer Ingelheim, Mundipharma, Mylan, Novartis, and Thermofisher; stock/stock options from AKL Research and Development Ltd, which produces phytopharmaceuticals; ownership of 74% of the social enterprise Optimum Patient Care Ltd (Australia and UK) and 92.61% of Observational and Pragmatic Research Institute Pte Ltd (Singapore); 5% shareholding in Timestamp, which develops adherence monitoring technology; a peer reviewer role for grant committees of the UK Efficacy and Mechanism Evaluation programme and the Health Technology Assessment; and served as an expert witness for GlaxoSmithKline. David Cohen, Peter Barker, James Kreindler, Maria Jison, Chris Brooks, Peggy Papeleu, and Rohit Katial are employees of AstraZeneca. This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors. Data sharing is not applicable to this article as no datasets were generated or analysed for this response letter. Funding Information: Andrew Menzies-Gow has attended advisory boards for AstraZeneca, GlaxoSmithKline, Novartis, Sanofi, and Teva; has received speaker fees from AstraZeneca, Novartis, Sanofi, and Teva; has participated in research with AstraZeneca for which his institution has been remunerated and has attended international conferences with Teva; and has had consultancy agreements with AstraZeneca and Sanofi. Flavia L. Hoyte has attended advisory boards for AstraZeneca; has received speaker fees from AstraZeneca and GlaxoSmithKline; and has participated in research sponsored by AstraZeneca, GlaxoSmithKline, Genentech, Teva, Sanofi, and the National Institute of Allergy and Infectious Diseases (NIAID), for which her institution has been remunerated. David B. Price has board membership with AstraZeneca, Boehringer Ingelheim, Chiesi, Mylan, Novartis, Regeneron Pharmaceuticals, Sanofi Genzyme, and Thermofisher; consultancy agreements with Airway Vista Secretariat, AstraZeneca, Boehringer Ingelheim, Chiesi, EPG Communication Holdings Ltd, FIECON Ltd, Fieldwork International, GlaxoSmithKline, Mylan, Mundipharma, Novartis, OM Pharma SA, PeerVoice, Phadia AB, Spirosure Inc, Strategic North Limited, Synapse Research Management Partners S.L., Talos Health Solutions, Theravance, and WebMD Global LLC; grants and unrestricted funding for investigator-initiated studies (conducted through Observational and Pragmatic Research Institute Pte Ltd) from AstraZeneca, Boehringer Ingelheim, Chiesi, Mylan, Novartis, Regeneron Pharmaceuticals, Respiratory Effectiveness Group, Sanofi Genzyme, Theravance, and the UK National Health Service; received payment for lectures/speaking engagements from AstraZeneca, Boehringer Ingelheim, Chiesi, Cipla, GlaxoSmithKline, Kyorin, Mylan, Mundipharma, Novartis, Regeneron Pharmaceuticals, and Sanofi Genzyme; received payment for travel/accommodation/meeting expenses from AstraZeneca, Boehringer Ingelheim, Mundipharma, Mylan, Novartis, and Thermofisher; stock/stock options from AKL Research and Development Ltd, which produces phytopharmaceuticals; ownership of 74% of the social enterprise Optimum Patient Care Ltd (Australia and UK) and 92.61% of Observational and Pragmatic Research Institute Pte Ltd (Singapore); 5% shareholding in Timestamp, which develops adherence monitoring technology; a peer reviewer role for grant committees of the UK Efficacy and Mechanism Evaluation programme and the Health Technology Assessment; and served as an expert witness for GlaxoSmithKline. David Cohen, Peter Barker, James Kreindler, Maria Jison, Chris Brooks, Peggy Papeleu, and Rohit Katial are employees of AstraZeneca. Funding Information: Medical writing support was provided by Dan Jackson, Ph.D., CMPP (CiTRUS Health Group), and was funded by AstraZeneca (Cambridge, UK) in accordance with Good Publication Practice (GPP3) guidelines.Peer reviewedPublisher PD

    Eye Size at Birth in Prosimian Primates: Life History Correlates and Growth Patterns

    Get PDF
    BACKGROUND: Primates have large eyes relative to head size, which profoundly influence the ontogenetic emergence of facial form. However, growth of the primate eye is only understood in a narrow taxonomic perspective, with information biased toward anthropoids.\ud \ud METHODOLOGY/PRINCIPAL FINDINGS: We measured eye and bony orbit size in perinatal prosimian primates (17 strepsirrhine taxa and Tarsius syrichta) to infer the extent of prenatal as compared to postnatal eye growth. In addition, multiple linear regression was used to detect relationships of relative eye and orbit diameter to life history variables. ANOVA was used to determine if eye size differed according to activity pattern. In most of the species, eye diameter at birth measures more than half of that for adults. Two exceptions include Nycticebus and Tarsius, in which more than half of eye diameter growth occurs postnatally. Ratios of neonate/adult eye and orbit diameters indicate prenatal growth of the eye is actually more rapid than that of the orbit. For example, mean neonatal transverse eye diameter is 57.5% of the adult value (excluding Nycticebus and Tarsius), compared to 50.8% for orbital diameter. If Nycticebus is excluded, relative gestation age has a significant positive correlation with relative eye diameter in strepsirrhines, explaining 59% of the variance in relative transverse eye diameter. No significant differences were found among species with different activity patterns.\ud \ud CONCLUSIONS/SIGNIFICANCE: The primate developmental strategy of relatively long gestations is probably tied to an extended period of neural development, and this principle appears to apply to eye growth as well. Our findings indicate that growth rates of the eye and bony orbit are disassociated, with eyes growing faster prenatally, and the growth rate of the bony orbit exceeding that of the eyes after birth. Some well-documented patterns of orbital morphology in adult primates, such as the enlarged orbits of nocturnal species, mainly emerge during postnatal development.\ud \u

    Pediatric Death Due to Myocarditis After Exposure to Cannabis

    No full text
    Since marijuana legalization, pediatric exposures to cannabis have increased.1 To date, pediatric deathsfrom cannabis exposure have not been reported. The authors report an 11-month-old male who, followingcannabis exposure, presented with central nervous system depression after seizure, and progressed tocardiac arrest and died. Myocarditis was diagnosed post-mortem and cannabis exposure was confirmed.Given the temporal relationship of these two rare occurrences – cannabis exposure and sudden deathsecondary to myocarditis in an 11-month-old – as well as histological consistency with drug-inducedmyocarditis without confirmed alternate causes, and prior reported cases of cannabis-associatedmyocarditis, a possible relationship exists between cannabis exposure in this child and myocarditisleading to death. In areas where marijuana is commercially available or decriminalized, the authors urgeclinicians to preventively counsel parents and to include cannabis exposure in the differential diagnosis ofpatients presenting with myocarditis

    Prognostic factors of acetaminophen exposure in the United States: An analysis of 39,000 patients

    No full text
    International audienceAcetaminophen is a frequently used over-the-counter or prescribed medication in the United States. Exposure to acetaminophen can lead to acute liver cytolysis, acute liver failure, acute kidney injury, encephalopathy, and coagulopathy. This retrospective cohort study (1/1/2012 to 12/31/2017) investigated the clinical outcomes of intentional and unintentional acetaminophen exposure using the National Poison Data System data. The frequency of outcomes, chronicity, gender, route of exposure, the reasons for exposure, and treatments as described. Binary logistic regression was used to estimate the prognostic factors and odds ratios (OR) with 95% confidence intervals (CI) for outcomes. This study included 39,022 patients with acetaminophen exposure. Our study demonstrated that the likelihood of developing severe outcomes increased by aging (OR = 1.12, 95% CI: 1.08–1.015) and was lower in females (OR = 0.88, 95% CI: 0.78–0.99). Drowsiness/lethargy (OR = 1.48, 95% CI: 1.22–1.82), agitation (OR = 1.66, 95% CI: 1.11–2.50), coma (OR = 23.95, 95% CI: 17.05–33.64), bradycardia (OR = 2.29, 95% CI: 1.22–4.32), rhabdomyolysis (OR = 8.84, 95% CI: 3.71–21.03), hypothermia (OR = 4.1, 95% CI: 1.77–9.51), and hyperthermia 2.10 (OR = 2.10, 95% CI: 1.04–4.22) were likely associated with major outcomes or death. Treatments included intravenous N-acetylcysteine (61%), oral N-acetylcysteine (10%), vasopressor (1%), hemodialysis (0.7%), fomepizole (0.1%), hemoperfusion (0.03%), and liver transplant (0.1%). In conclusion, it is important to consider clinical presentations of patients with acetaminophen toxicity that result in major outcomes and mortality to treat them effectively

    Using a decision tree algorithm to distinguish between repeated supra-therapeutic and acute acetaminophen exposures

    No full text
    Abstract Background This study aimed to compare clinical and laboratory characteristics of supra-therapeutic (RSTI) and acute acetaminophen exposures using a predictive decision tree (DT) algorithm. Methods We conducted a retrospective cohort study using the National Poison Data System (NPDS). All patients with RSTI acetaminophen exposure (n = 4,522) between January 2012 and December 2017 were included. Additionally, 4,522 randomly selected acute acetaminophen ingestion cases were included. After that, the DT machine learning algorithm was applied to differentiate acute acetaminophen exposure from supratherapeutic exposures. Results The DT model had accuracy, precision, recall, and F1-scores of 0.75, respectively. Age was the most relevant variable in predicting the type of acetaminophen exposure, whether RSTI or acute. Serum aminotransferase concentrations, abdominal pain, drowsiness/lethargy, and nausea/vomiting were the other most important factors distinguishing between RST and acute acetaminophen exposure. Conclusion DT models can potentially aid in distinguishing between acute and RSTI of acetaminophen. Further validation is needed to assess the clinical utility of this model
    corecore