13 research outputs found

    Image_1.jpeg

    No full text
    <p>B-1 cells constitute a unique subpopulation of lymphocytes residing mainly in body cavities like the peritoneal cavity (PerC) but are also found in spleen and bone marrow (BM). As innate-like B cells, they mediate first line immune defense through low-affinity natural IgM (nIgM) antibodies. PerC B-1 cells can egress to the spleen and differentiate into nIgM antibody-secreting plasma cells that recognize conserved exogenous and endogenous cellular structures. Homing to and homeostasis within the PerC are regulated by the chemokine CXCL13 released by PerC macrophages and stroma cells. However, the exact mechanisms underlying the regulation of CXCL13 and B-1 homeostasis are not fully explored. B-1 cells play important roles in the inflammatory response to infection, autoimmunity, ischemia/reperfusion injury, obesity, and atherosclerosis. Remarkably, this list of inflammatory entities has a strong overlap with diseases that are regulated by complement suggesting a link between B-1 cells and the complement system. Interestingly, up to now, no data exist regarding the role of complement in B-1 cell biology. Here, we demonstrate for the first time that C5a regulates B-1 cell steady-state dynamics within the peritoneum, the spleen, and the BM. We found decreased B-1a cell numbers in the peritoneum and the spleen of C5aR1<sup>−/−</sup> mice associated with increased B1-a and B1-b numbers in the spleen and high serum titers of nIgM antibodies directed against phosphorylcholine and several pneumococcal polysaccharides. Similarly, peritoneal B-1a cells were decreased in the peritoneum and splenic B-1a and B-1b cells were increased in C5aR2<sup>−/−</sup> mice. The decrease in peritoneal B-1 cell numbers was associated with decreased peritoneal CXCL13 levels in C5aR1<sup>−/−</sup> and C5aR2<sup>−/−</sup> mice. In search for mechanisms, we found that combined TLR2 and IL-10 receptor activation in PerC macrophages induced strong CXCL13 production, which was significantly reduced in cells from C5aR1- and C5aR2-deficient mice and after combined C5aR-targeting. Such stimulation also induced marked local C5 production by PerC macrophages and C5a generation. Importantly, peritoneal in vivo administration of C5a increased CXCL13 production. Taken together, our findings suggest that local non-canonical C5 activation in PerC macrophages fuels CXCL13 production as a novel mechanism to control B-1 cell homeostasis.</p

    Image_2.jpeg

    No full text
    <p>B-1 cells constitute a unique subpopulation of lymphocytes residing mainly in body cavities like the peritoneal cavity (PerC) but are also found in spleen and bone marrow (BM). As innate-like B cells, they mediate first line immune defense through low-affinity natural IgM (nIgM) antibodies. PerC B-1 cells can egress to the spleen and differentiate into nIgM antibody-secreting plasma cells that recognize conserved exogenous and endogenous cellular structures. Homing to and homeostasis within the PerC are regulated by the chemokine CXCL13 released by PerC macrophages and stroma cells. However, the exact mechanisms underlying the regulation of CXCL13 and B-1 homeostasis are not fully explored. B-1 cells play important roles in the inflammatory response to infection, autoimmunity, ischemia/reperfusion injury, obesity, and atherosclerosis. Remarkably, this list of inflammatory entities has a strong overlap with diseases that are regulated by complement suggesting a link between B-1 cells and the complement system. Interestingly, up to now, no data exist regarding the role of complement in B-1 cell biology. Here, we demonstrate for the first time that C5a regulates B-1 cell steady-state dynamics within the peritoneum, the spleen, and the BM. We found decreased B-1a cell numbers in the peritoneum and the spleen of C5aR1<sup>−/−</sup> mice associated with increased B1-a and B1-b numbers in the spleen and high serum titers of nIgM antibodies directed against phosphorylcholine and several pneumococcal polysaccharides. Similarly, peritoneal B-1a cells were decreased in the peritoneum and splenic B-1a and B-1b cells were increased in C5aR2<sup>−/−</sup> mice. The decrease in peritoneal B-1 cell numbers was associated with decreased peritoneal CXCL13 levels in C5aR1<sup>−/−</sup> and C5aR2<sup>−/−</sup> mice. In search for mechanisms, we found that combined TLR2 and IL-10 receptor activation in PerC macrophages induced strong CXCL13 production, which was significantly reduced in cells from C5aR1- and C5aR2-deficient mice and after combined C5aR-targeting. Such stimulation also induced marked local C5 production by PerC macrophages and C5a generation. Importantly, peritoneal in vivo administration of C5a increased CXCL13 production. Taken together, our findings suggest that local non-canonical C5 activation in PerC macrophages fuels CXCL13 production as a novel mechanism to control B-1 cell homeostasis.</p

    Image_3.jpeg

    No full text
    <p>B-1 cells constitute a unique subpopulation of lymphocytes residing mainly in body cavities like the peritoneal cavity (PerC) but are also found in spleen and bone marrow (BM). As innate-like B cells, they mediate first line immune defense through low-affinity natural IgM (nIgM) antibodies. PerC B-1 cells can egress to the spleen and differentiate into nIgM antibody-secreting plasma cells that recognize conserved exogenous and endogenous cellular structures. Homing to and homeostasis within the PerC are regulated by the chemokine CXCL13 released by PerC macrophages and stroma cells. However, the exact mechanisms underlying the regulation of CXCL13 and B-1 homeostasis are not fully explored. B-1 cells play important roles in the inflammatory response to infection, autoimmunity, ischemia/reperfusion injury, obesity, and atherosclerosis. Remarkably, this list of inflammatory entities has a strong overlap with diseases that are regulated by complement suggesting a link between B-1 cells and the complement system. Interestingly, up to now, no data exist regarding the role of complement in B-1 cell biology. Here, we demonstrate for the first time that C5a regulates B-1 cell steady-state dynamics within the peritoneum, the spleen, and the BM. We found decreased B-1a cell numbers in the peritoneum and the spleen of C5aR1<sup>−/−</sup> mice associated with increased B1-a and B1-b numbers in the spleen and high serum titers of nIgM antibodies directed against phosphorylcholine and several pneumococcal polysaccharides. Similarly, peritoneal B-1a cells were decreased in the peritoneum and splenic B-1a and B-1b cells were increased in C5aR2<sup>−/−</sup> mice. The decrease in peritoneal B-1 cell numbers was associated with decreased peritoneal CXCL13 levels in C5aR1<sup>−/−</sup> and C5aR2<sup>−/−</sup> mice. In search for mechanisms, we found that combined TLR2 and IL-10 receptor activation in PerC macrophages induced strong CXCL13 production, which was significantly reduced in cells from C5aR1- and C5aR2-deficient mice and after combined C5aR-targeting. Such stimulation also induced marked local C5 production by PerC macrophages and C5a generation. Importantly, peritoneal in vivo administration of C5a increased CXCL13 production. Taken together, our findings suggest that local non-canonical C5 activation in PerC macrophages fuels CXCL13 production as a novel mechanism to control B-1 cell homeostasis.</p

    The association of mannose-binding lectin 2 polymorphisms with outcome in very low birth weight infants

    No full text
    <div><p>Objectives</p><p>Studies on the influence of mannose-binding lectin (MBL) deficiency on infection susceptibility in preterm infants have yielded controversial results. We investigated the association of genotype-based MBL levels with outcome in very-low-birth weight infants (VLBWI).</p><p>Methods</p><p>We genotyped 3 genetic variants of MBL2 (rs1800450, rs1800451, rs5030737) in 6878 VLBWI. MBL plasma levels were categorized as normal (wild type, A/A), low (heterozygotes, A/O) or undetectable (homozygotes, O/O). Primary outcome was the effect of genotype-based MBL2 levels on blood-culture proven and clinical sepsis during primary stay in hospital. We also evaluated burden of infection within 24 months after discharge.</p><p>Results</p><p>We found no association between MBL levels and sepsis risk in the whole cohort. Infants without measurable MBL levels born between 32 0/7 to 36 6/7 weeks of gestation, however, had a higher rate of Gram-negative sepsis than infants with normal or reduced MBL levels. In a follow-up investigation at 24 months (n = 1070 infants), infants without measurable MBL levels suffered more frequently from stomatitis and urinary tract infection.</p><p>Conclusions</p><p>In a large cohort of VLBWI MBL2 deficiency had no major impact on infection risk unless children were born between 32 0/7 and 36 6/7 weeks of gestation.</p></div

    Carboxypeptidase E Modulates Intestinal Immune Homeostasis and Protects against Experimental Colitis in Mice

    No full text
    <div><p>Enteroendocrine cells (EEC) produce neuropeptides, which are crucially involved in the maintenance of the intestinal barrier. Hence, EEC dysfunction is suggested to be involved in the complex pathophysiology of inflammatory bowel disease (IBD), which is characterized by decreased intestinal barrier function. However, the underlying mechanisms for EEC dysfunction are not clear and suitable models for a better understanding are lacking. Here, we demonstrate that Carboxypeptidase E (CPE) is specifically expressed in EEC of the murine colon and ileum and that its deficiency is associated with reduced intestinal levels of Neuropeptide Y (NPY) and Peptide YY (PYY), which are both produced by EEC. Moreover, <i>cpe<sup>−/−</sup></i> mice exhibit an aggravated course of DSS-induced chronic colitis compared to wildtype littermates. In addition, we observed elevated mucosal IL-6 and KC transcript levels already at baseline conditions in <i>cpe<sup>−/−</sup></i> mice. Moreover, supernatants obtained from isolated intestinal crypts of <i>cpe<sup>−/−</sup></i> mice lead to increased IL-6 and KC expression in MODE-K cells in the presence of LPS. This effect was reversible by co-administration of recombinant NPY, suggesting a CPE mediated immunosuppressive effect in the intestines by influencing the processing of specific neuropeptides. In this context, the chemotaxis of bone marrow derived macrophages towards respective supernatants was enhanced. In conclusion, our data point to an anti-inflammatory role of CPE in the intestine by influencing local cytokine levels and thus regulating the migration of myeloid immune cells into the mucosa. These findings highlight the importance of EEC for intestinal homeostasis and propose EEC as potential therapeutic targets in IBD.</p></div

    Episodes of herpes stomatitis and bacterial urinary tract infection in the first 24 months of life.

    No full text
    <p>The mean±SD number of episodes of episodes of stomatitis and urinary tract infection (UTI) are based on parents’ responses to the KIGGS questionnaire at 24 months of age. Data are described according to genotype-based MBL levels. Infants without measurable MBL levels had a higher rate of herpes stomatitis as compared to infants with normal MBL levels (p = 0.004) and low MBL levels (p = 0.02) and a higher frequency of bacterial UTI as compared to infants with normal MBL levels (p = 0.03, Mann-Whitney U-test).</p
    corecore