15 research outputs found

    Global Flood Monitoring (GFM) new release v2.0.0

    Get PDF
    The Copernicus Emergency Management Service has been developing a new operational product providing a continuous global, systematic, and automated monitoring of all land surface areas possibly affected by flooding. This new global flood monitoring (GFM) product processes all incoming Sentinel-1 images and analyses them using an ensemble of 3 flood detection algorithms providing a high timeliness and quality of the product. The workshop, in the form of a webinar, will present the currently available data and product that have been developed as part of the GFM focusing on the high-resolution satellite-based products for flood monitoring at global scale, freely accessible in real-time through GloFAS

    Sentinel-1-based water and flood mapping: benchmarking convolutional neural networks against an operational rule-based processing chain

    Get PDF
    In this study, the effectiveness of several convolutional neural network architectures (AlbuNet-34/FCN/DeepLabV3+/U-Net/U-Net++) for water and flood mapping using Sentinel-1 amplitude data is compared to an operational rule-based processor (S-1FS). This comparison is made using a globally distributed dataset of Sentinel-1 scenes and the corresponding ground truth water masks derived from Sentinel-2 data to evaluate the performance of the classifiers on a global scale in various environmental conditions. The impact of using single versus dual-polarized input data on the segmentation capabilities of AlbuNet-34 is evaluated. The weighted cross entropy loss is combined with the Lovász loss and various data augmentation methods are investigated. Furthermore, the concept of atrous spatial pyramid pooling used in DeepLabV3+ and the multiscale feature fusion inherent in U-Net++ are assessed. Finally, the generalization capacity of AlbuNet-34 is tested in a realistic flood mapping scenario by using additional data from two flood events and the Sen1Floods11 dataset. The model trained using dual polarized data outperforms the S-1FS significantly and increases the intersection over union (IoU) score by 5%. Using a weighted combination of the cross entropy and the Lovász loss increases the IoU score by another 2%. Geometric data augmentation degrades the performance while radiometric data augmentation leads to better testing results. FCN/DeepLabV3+/U-Net/U-Net++ perform not significantly different to AlbuNet-34. Models trained on data showing no distinct inundation perform very well in mapping the water extent during two flood events, reaching IoU scores of 0.96 and 0.94, respectively, and perform comparatively well on the Sen1Floods11 dataset

    S1S2-Water: A global dataset for semantic segmentation of water bodies from Sentinel-1 and Sentinel-2 satellite images Wieland, Fichtner, Martinis, Groth, Krullikowski, Plank, Motagh

    Get PDF
    This study introduces the S1S2-Water dataset - a global reference dataset for training, validation and testing of convolutional neural networks for semantic segmentation of surface water bodies in publicly available Sentinel-1 and Sentinel-2 satellite images. The dataset consists of 65 triplets of Sentinel-1 and Sentinel-2 images with quality checked binary water mask. Samples are drawn globally on the basis of the Sentinel-2 tile-grid (100 x 100 km) under consideration of pre-dominant landcover and availability of water bodies. Each sample is complemented with metadata and Digital Elevation Model (DEM) raster from the Copernicus DEM. On the basis of this dataset we carry out performance evaluation of convolutional neural network architectures to segment surface water bodies from Sentinel-1 and Sentinel-2 images. We specifically evaluate the influence of image bands, elevation features (slope) and data augmentation on the segmentation performance and identify best-performing baseline-models. The model for Sentinel-1 achieves an Intersection Over Union of 0.845, Precision of 0.932 and Recall of 0.896 on the test data. For Sentinel-2 the best model produces an Intersection Over Union of 0.965, Precision of 0.989 and Recall of 0.951 respectively. We also evaluate the performance impact when a model is trained on permanent water data and applied to independent test scenes of floods. The S1S2-Water dataset is released openly and available for download: https://doi.org/10.5281/zenodo.8314175

    S1S2-Water: A global dataset for semantic segmentation of water bodies from Sentinel-1 and Sentinel-2 satellite images

    No full text
    <p>The S1S2-Water dataset is a global reference dataset for training, validation and testing of convolutional neural networks for semantic segmentation of surface water bodies in publicly available Sentinel-1 and Sentinel-2 satellite images. The dataset consists of 65 triplets of Sentinel-1 and Sentinel-2 images with quality checked binary water mask. Samples are drawn globally on the basis of the Sentinel-2 tile-grid (100 x 100 km) under consideration of pre-dominant landcover and availability of water bodies. Each sample is complemented with metadata and Digital Elevation Model (DEM) raster from the Copernicus DEM.</p><p>This work was supported by the German Federal Ministry of Education and Research (BMBF) through the project "Künstliche Intelligenz zur Analyse von Erdbeobachtungs- und Internetdaten zur Entscheidungsunterstützung im Katastrophenfall" (AIFER) under Grant 13N15525, and by the Helmholtz Artificial Intelligence Cooperation Unit through the project "AI for Near Real Time Satellite-based Flood Response" (AI4FLOOD) under Grant ZT-IPF-5-39. </p&gt
    corecore