795 research outputs found

    On the Unification of Gauge Symmetries in Theories with Dynamical Symmetry Breaking

    Full text link
    We analyze approaches to the partial or complete unification of gauge symmetries in theories with dynamical symmetry breaking. Several types of models are considered, including those that (i) involve sufficient unification to quantize electric charge, (ii) attempt to unify the three standard-model gauge interactions in a simple Lie group that forms a direct product with an extended technicolor group, and, most ambitiously, (iii) attempt to unify the standard-model gauge interactions with (extended) technicolor in a simple Lie group.Comment: 24 pages, ReVTe

    Implications of Dynamical Generation of Standard-Model Fermion Masses

    Full text link
    We point out that if quark and lepton masses arise dynamically, then in a wide class of theories the corresponding running masses mfj(p)m_{f_j}(p) exhibit the power-law decay mfj(p)Λj2/p2m_{f_j}(p) \propto \Lambda_j^2/p^2 for Euclidean momenta p>>Λjp >> \Lambda_j, where fjf_j is a fermion of generation jj, and Λj\Lambda_j is the maximal scale relevant for the origin of mfjm_{f_j}. We estimate resultant changes in precision electroweak quantities and compare with current data. It is found that this data allows the presence of such corrections. We also note that this power-law decay renders primitively divergent fermion mass corrections finite.Comment: 4 pages, late

    Pair Production of MSSM Higgs Bosons in the Non-decoupling Region at the LHC

    Full text link
    We consider the Higgs boson signals from pair production at the LHC within the framework of the MSSM in the non-decoupling (low-m_A) region. In light of the recent observation of a SM-like Higgs boson, we argue that the exploration for Higgs pair production at the LHC is a crucial next step to probe the MSSM Higgs sector. We emphasize that the production of H^\pm A^0 and H^{+}H^{-} depends only on the electroweak gauge couplings while all the leading Higgs production channels via gluon fusion, vector-boson fusion, and Higgsstrahlung depend on additional free Higgs sector parameters. In the non-decoupling region, the five MSSM Higgs bosons are all relatively light and pair production signals may be accessible. We find that at the 8 TeV LHC, a 5\sigma signal for H^\pm A^0, H^\pm h^0 -> \tau^{\pm}\nu b\bar b and H^{+}H^{-} -> \tau^{+}\nu \tau^{-}\nu are achievable with an integrated luminosity of 7 (11) fb^{-1} and 24 (48) fb^{-1}, respectively for m_A=95 (130) GeV. At the 14 TeV LHC, a 5\sigma signal for these two channels would require as little as 4 (7) fb^{-1} and 10 (19) fb^{-1}, respectively.Comment: 20 pages, 8 figures and 3 tables. Version to appear in PR

    Deconstructed Higgsless Models at LHC: The Top Triangle Moose

    Get PDF
    We describe a deconstructed Higgsless model in which electroweak symmetry breaking results largely from a Higgsless mechanism while the top quark mass is generated by a topcolor mechanism. The top quark mass arises from a Yukawa coupling to an effective top-Higgs which develops a small vacuum expectation value. Both the heavy partners of the electoweak gauge bosons and those for the SM fermions can be light enough to be visible at LHC.Comment: 5 pages, 3 figures; from the Proceedings of the 2010 Rencontres de Bloi

    Extended Technicolor Models with Two ETC Groups

    Full text link
    We construct extended technicolor (ETC) models that can produce the large splitting between the masses of the tt and bb quarks without necessarily excessive contributions to the ρ\rho parameter or to neutral flavor-changing processes. These models make use of two different ETC gauge groups, such that left- and right-handed components of charge Q=2/3Q=2/3 quarks transform under the same ETC group, while left- and right-handed components of charge -1/3 quarks and charged leptons transform under different ETC groups. The models thereby suppress the masses mbm_b and mτm_\tau relative to mtm_t, and msm_s and mμm_\mu relative to mcm_c because the masses of the Q=1/3Q=-1/3 quarks and charged leptons require mixing between the two ETC groups, while the masses of the Q=2/3Q=2/3 quarks do not. A related source of the differences between these mass splittings is the effect of the two hierarchies of breaking scales of the two ETC groups. We analyze a particular model of this type in some detail. Although we find that this model tends to suppress the masses of the first two generations of down-type quarks and charged leptons too much, it gives useful insights into the properties of theories with more than one ETC group.Comment: 14 pages, 4 figure

    New developments in FeynRules

    Full text link
    The program FeynRules is a Mathematica package developed to facilitate the implementation of new physics theories into high-energy physics tools. Starting from a minimal set of information such as the model gauge symmetries, its particle content, parameters and Lagrangian, FeynRules provides all necessary routines to extract automatically from the Lagrangian (that can also be computed semi-automatically for supersymmetric theories) the associated Feynman rules. These can be further exported to several Monte Carlo event generators through dedicated interfaces, as well as translated into a Python library, under the so-called UFO model format, agnostic of the model complexity, especially in terms of Lorentz and/or color structures appearing in the vertices or of number of external legs. In this work, we briefly report on the most recent new features that have been added to FeynRules, including full support for spin-3/2 fermions, a new module allowing for the automated diagonalization of the particle spectrum and a new set of routines dedicated to decay width calculations.Comment: 6 pages. Contribution to the 15th International Workshop on advanced computing and analysis techniques (ACAT 2013), 16-21 May, Beijing, Chin

    Low-Energy Effective Theory, Unitarity, and Non-Decoupling Behavior in a Model with Heavy Higgs-Triplet Fields

    Get PDF
    We discuss the properties of a model incorporating both a scalar electroweak Higgs doublet and an electroweak Higgs triplet. We construct the low-energy effective theory for the light Higgs-doublet in the limit of small (but nonzero) deviations in the rho parameter from one, a limit in which the triplet states become heavy. For small deviations in the rho parameter from one, perturbative unitarity of WW scattering breaks down at a scale inversely proportional to the renormalized vacuum expectation value of the triplet field (or, equivalently, inversely proportional to the square-root of the deviation of the rho parameter from one). This result imposes an upper limit on the mass-scale of the heavy triplet bosons in a perturbative theory; we show that this upper bound is consistent with dimensional analysis in the low-energy effective theory. Recent articles have shown that the triplet bosons do not decouple, in the sense that deviations in the rho parameter from one do not necessarily vanish at one-loop in the limit of large triplet mass. We clarify that, despite the non-decoupling behavior of the Higgs-triplet, this model does not violate the decoupling theorem since it incorporates a large dimensionful coupling. Nonetheless, we show that if the triplet-Higgs boson masses are of order the GUT scale, perturbative consistency of the theory requires the (properly renormalized) Higgs-triplet vacuum expectation value to be so small as to be irrelevant for electroweak phenomenology.Comment: Revtex, 11 pages, 7 eps figures included; references updated and three footnotes adde
    corecore