33 research outputs found

    Accuracy of Capsule Colonoscopy in Detecting Colorectal Polyps in a Screening Population

    Get PDF
    BACKGROUND & AIMS: Capsule colonoscopy is a minimally invasive imaging method. We measured the accuracy of this technology in detecting polyps 6 mm or larger in an average-risk screening population. METHODS: In a prospective study, asymptomatic subjects (n = 884) underwent capsule colonoscopy followed by conventional colonoscopy (the reference) several weeks later, with an endoscopist blinded to capsule results, at 10 centers in the United States and 6 centers in Israel from June 2011 through April 2012. An unblinded colonoscopy was performed on subjects found to have lesions 6 mm or larger by capsule but not conventional colonoscopy. RESULTS: Among the 884 subjects enrolled, 695 (79%) were included in the analysis of capsule performance for all polyps. There were 77 exclusions (9%) for inadequate cleansing and whole-colon capsule transit time fewer than 40 minutes, 45 exclusions (5%) before capsule ingestion, 15 exclusions (2%) after ingestion and before colonoscopy, and 15 exclusions (2%) for site termination. Capsule colonoscopy identified subjects with 1 or more polyps 6 mm or larger with 81% sensitivity (95% confidence interval [CI], 77%-84%) and 93% specificity (95% CI, 91%-95%), and polyps 10 mm or larger with 80% sensitivity (95% CI, 74%-86%) and 97% specificity (95% CI, 96%-98%). Capsule colonoscopy identified subjects with 1 or more conventional adenomas 6 mm or larger with 88% sensitivity (95% CI, 82%-93) and 82% specificity (95% CI, 80%-83%), and 10 mm or larger with 92% sensitivity (95% CI, 82%-97%) and 95% specificity (95% CI, 94%-95%). Sessile serrated polyps and hyperplastic polyps accounted for 26% and 37%, respectively, of false-negative findings from capsule analyses. CONCLUSIONS: In an average-risk screening population, technically adequate capsule colonoscopy identified individuals with 1 or more conventional adenomas 6 mm or larger with 88% sensitivity and 82% specificity. Capsule performance seems adequate for patients who cannot undergo colonoscopy or who had incomplete colonoscopies. Additional studies are needed to improve capsule detection of serrated lesions. Clinicaltrials.gov number: NCT01372878

    The modern self in the labyrinth : a study of entrapment in the works of Weber, Freud, and Foucault

    No full text
    In the works of Weber, Freud, and Foucault we find a distinct depiction of the relation between the self and modern civilization. This thesis describes that relation as "entrapment": the self has become mired in the life orders of modernity and is unable to reign over them. The primary hazard of these orders is their imposition of subjectivities that are highly circumscribed, subjectivities more responsive to external functions and imperatives than to the expression of individuality. Underlying this outlook is a new consciousness of time; in lieu of evolutionary and progressive theories of history, a tragic view emerges. History is seen as devoid of any deterministic necessity, yet its collective products have become too weighty and entrenched to allow for radical, over-arching political transformations. The thesis examines how, beginning with these shared presuppositions, Weber, Freud, and Foucault develop very different understandings of entrapment, understandings that pose fundamental challenges to one another

    Simultaneous Detection of Common Founder Mutations Using a Cost-Effective Deep Sequencing Panel

    No full text
    Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous group of diseases which cause visual loss due to Mendelian mutations in over 250 genes, making genetic diagnosis challenging and time-consuming. Here, we developed a new tool, CDIP (Cost-effective Deep-sequencing IRD Panel) in which a simultaneous sequencing of common mutations is performed. CDIP is based on simultaneous amplification of 47 amplicons harboring common mutations followed by next-generation sequencing (NGS). Following five rounds of calibration of NGS-based steps, CDIP was used in 740 IRD samples. The analysis revealed 151 mutations in 131 index cases. In 54 (7%) of these cases, CDIP identified the genetic cause of disease (the remaining were single-heterozygous recessive mutations). These include a patient that was clinically diagnosed with retinoschisis and found to be homozygous for NR2E3-c.932G>A (p.R311Q), and a patient with RP who is hemizygous for an RPGR variant, c.292C>A (p.H98N), which was not included in the analysis but is located in proximity to one of these mutations. CDIP is a cost-effective deep sequencing panel for simultaneous detection of common founder mutations. This protocol can be implemented for additional populations as well as additional inherited diseases, and mainly in populations with strong founder effects

    Development and Evaluation of a New Self-Administered Near Visual Acuity Chart: Accuracy and Feasibility of Usage

    No full text
    Background: Visual acuity (VA) assessments are crucial in ophthalmology but traditionally rely on in-clinic evaluations. The emergence of telemedicine has spurred interest in creating dependable self-administered VA tests for use beyond standard clinical environments. This study evaluated the practicality and validity of a self-administered near VA card test against traditional Snellen and Rosenbaum Pocket Vision Screener (RPVS) methods for home monitoring and enhancing clinical workflow. Methods: In a cross-sectional study, a near VA card (Hadassah Self-Visual Acuity Screener (HSVA)) was developed with written and videotaped instructions for self-use. Patients with a minimal best-corrected VA (BCVA) of 1.0 LogMAR in at least one eye were recruited from ophthalmology and optometry clinics. Outcomes included the mean BCVA difference between the self-administered values and those obtained by the examiner, and correlations between BCVA values obtained by the Snellen, RPVS, HSVA, and previous distance BCVA methods according to the patients’ electronic medical records. Results: A total of 275 participants (mean age: 42.5 ± 19.4 years; range: 18–89 years; 47% female) were included. Test–retest reliability analysis of the HSVA demonstrated a very good correlation and repeatability (n = 38 patients; Rs = 1.0; p p = 0.10). The self-test BCVA results obtained by the HSVA agreed with the masked examiner-tested VA results (n = 67 patients; p = 0.17; Rs = 0.87; ICC = 0.96). Similar results were obtained when stratification by median age (42 years) was performed. Bland–Altman analysis of the HSVA and RPVS methods demonstrated a good agreement. To assess whether the HSVA could predict the VA results in the clinically used charts, multivariate analysis was used and revealed that the HSVA predicted the RPVS results (β = 0.91; p = 0.001; R2 = 0.88), and the self-test HSVA predicted the Snellen VA results within two lines (β = 0.93; p = 0.01; R2 = 0.36). Conclusions: The home-based HSVA assessment exhibited high test–retest reliability, accuracy, and alignment with clinical-standard VA tests. Its efficacy in self-testing mirrored examiner-conducted VA assessments and accurately predicted Snellen VA outcomes, indicating the HSVA’s suitability for self-monitoring in chronic ocular conditions or when access to conventional examinations is limited. The utility of self-administered VA tests may extend beyond ophthalmology and optometry, potentially benefiting primary care, emergency medicine, and neurology. Further research is needed to explore and validate the practical applications of remote VA testing

    Degeneration Modulates Retinal Response to Transient Exogenous Oxidative Injury

    Get PDF
    <div><p>Purpose</p><p>Oxidative injury is involved in retinal and macular degeneration. We aim to assess if retinal degeneration associated with genetic defect modulates the retinal threshold for encountering additional oxidative challenges.</p><p>Methods</p><p>Retinal oxidative injury was induced in degenerating retinas (rd10) and in control mice (WT) by intravitreal injections of paraquat (PQ). Retinal function and structure was evaluated by electroretinogram (ERG) and histology, respectively. Oxidative injury was assessed by immunohistochemistry for 4-Hydroxy-2-nonenal (HNE), and by Thiobarbituric Acid Reactive Substances (TBARS) and protein carbonyl content (PCC) assays. Anti-oxidant mechanism was assessed by quantitative real time PCR (QPCR) for mRNA of antioxidant genes and genes related to iron metabolism, and by catalase activity assay.</p><p>Results</p><p>Three days following PQ injections (1 µl of 0.25, 0.75, and 2 mM) the average ERG amplitudes decreased more in the WT mice compared with the rd10 mice. For example, following 2 mM PQ injection, ERG amplitudes reduced 1.84-fold more in WT compared with rd10 mice (p = 0.02). Injection of 4 mM PQ resulted in retinal destruction. Altered retina morphology associated with PQ was substantially more severe in WT eyes compared with rd10 eyes. Oxidative injury according to HNE staining and TBARS assay increased 1.3-fold and 2.1-fold more, respectively, in WT compared with rd10 mice. At baseline, prior to PQ injection, mRNA levels of antioxidant genes (<i>Superoxide Dismutase1, Glutathione Peroxidase1, Catalase</i>) and of <i>Transferrin</i> measured by quantitative PCR were 2.1–7.8-fold higher in rd10 compared with WT mice (p<0.01 each), and catalase activity was 1.7-fold higher in rd10 (p = 0.0006).</p><p>Conclusions</p><p>This data suggests that degenerating rd10 retinas encounter a relatively lower degree of damage in response to oxidative injury compared with normal retinas. Constitutive up-regulation of the oxidative defense mechanism in degenerating retinas may confer such relative protection from oxidative injury.</p></div
    corecore