11,472 research outputs found

    Trailing Edge Noise Reduction by Passive and Active Flow Controls

    Get PDF
    This paper presents the results on the use of porous metal foams (passive control) and dielectric barrier surface plasma actuations (active control) for the reduction of vortex shedding tonal noises from the nonflat plate type trailing edge serration in a NACA0012 airfoil previously discussed in Chong et al. (AIAA J. Vol. 51, 2013, pp. 2665-2677). The use of porous metal foams to fill the interstices between adjacent members of the sawtooth can almost completely suppress the vortex shedding tonal noise, whilst the serration effect on the broadband noise reduction is retained. This concept will promote the nonflat plate type serrated trailing edge to become a genuine alternative to the conventional flat plate type serrated trailing edge, which is known to have drawbacks in the structural stability, aerodynamic performances and implementation issues. For the plasma actuators, configuration which produces electric wind in a tangential direction is found to be not very effective in suppressing the vortices emanated from the serration blunt root. On the other hand, for the plasma configuration which produces electric wind in a vertical direction, good level of vortex shedding tonal noise reduction has been demonstrated. However, the self noise produced by the plasma actuators negates the noise benefits on the tonal noise reduction. This characteristic illustrates the need to further develop the plasma actuators in a two pronged approach. First is to increase the electric wind speed, thereby allowing the plasma actuators to be used in a higher free jet velocity which naturally produces a larger level of jet noise. Second, the self noise radiated by the plasma actuators should be reduced

    Stochastic Variational Inference

    Full text link
    We develop stochastic variational inference, a scalable algorithm for approximating posterior distributions. We develop this technique for a large class of probabilistic models and we demonstrate it with two probabilistic topic models, latent Dirichlet allocation and the hierarchical Dirichlet process topic model. Using stochastic variational inference, we analyze several large collections of documents: 300K articles from Nature, 1.8M articles from The New York Times, and 3.8M articles from Wikipedia. Stochastic inference can easily handle data sets of this size and outperforms traditional variational inference, which can only handle a smaller subset. (We also show that the Bayesian nonparametric topic model outperforms its parametric counterpart.) Stochastic variational inference lets us apply complex Bayesian models to massive data sets

    Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal

    Full text link
    We point out that electromagnetic one-way edge modes analogous to quantum Hall edge states, originally predicted by Raghu and Haldane in 2D gyroelectric photonic crystals possessing Dirac point-derived bandgaps, can appear in more general settings. In particular, we show that the TM modes in a gyromagnetic photonic crystal can be formally mapped to electronic wavefunctions in a periodic electromagnetic field, so that the only requirement for the existence of one-way edge modes is that the Chern number for all bands below a gap is non-zero. In a square-lattice gyromagnetic Yttrium-Iron-Garnet photonic crystal operating at microwave frequencies, which lacks Dirac points, time-reversal breaking is strong enough that the effect should be easily observable. For realistic material parameters, the edge modes occupy a 10% band gap. Numerical simulations of a one-way waveguide incorporating this crystal show 100% transmission across strong defects, such as perfect conductors several lattice constants wide, larger than the width of the waveguide.Comment: 4 pages, 3 figures (Figs. 1 and 2 revised.

    Photon-induced production of the mirror quarks from the LHTLHT model at the LHCLHC

    Full text link
    The photon-induced processes at the LHCLHC provide clean experimental conditions due to absence of the proton remnants, which might produce complementary and interesting results for tests of the standard model and for searching of new physics. In the context of the littlest HiggsHiggs model with T-parity, we consider the photon-induced production of the mirror quarks at the LHCLHC. The cross sections for various production channels are calculated and a simply phenomenology analysis is performed by assuming leptonic decays.Comment: 20 pages, 10 figure

    Steady-state Ab Initio Laser Theory: Generalizations and Analytic Results

    Full text link
    We improve the steady-state ab initio laser theory (SALT) of Tureci et al. by expressing its fundamental self-consistent equation in a basis set of threshold constant flux states that contains the exact threshold lasing mode. For cavities with non-uniform index and/or non-uniform gain, the new basis set allows the steady-state lasing properties to be computed with much greater efficiency. This formulation of the SALT can be solved in the single-pole approximation, which gives the intensities and thresholds, including the effects of nonlinear hole-burning interactions to all orders, with negligible computational effort. The approximation yields a number of analytic predictions, including a "gain-clamping" transition at which strong modal interactions suppress all higher modes. We show that the single-pole approximation agrees well with exact SALT calculations, particularly for high-Q cavities. Within this range of validity, it provides an extraordinarily efficient technique for modeling realistic and complex lasers.Comment: 17 pages, 11 figure

    Superconductivity and Magnetism in REFeAsO1-xFx (RE=Rare Earth Elements)

    Full text link
    Fluoride-doped iron-based oxypnictides containing rare-earth gadolinium (GdFeAsO0.8F0.2) and co-doping with yttrium (Gd0.8Y0.2FeAsO0.8F0.2) have been prepared via conventional solid state reaction at ambient pressure. The non-yttrium substituted oxypnictide show superconducting transition as high as 43.9 K from temperature dependent resistance measurements with the Meissner effect observed at a lower temperature of 40.8 K from temperature dependent magnetization measurements. By replacing a small amount of gadolinium with yttrium Tc was observed to be lowered by 10 K which might be caused by a change in the electronic or magnetic structures since the crystal structure was not altered.Comment: 4 pages, 4 figures, Journal of Physics: Conference Series (Proceedings in the LT25 Low Temperature Physics Conference) Submitte

    Single production of charged gauge bosons from little Higgs models in association with top quark at the LHCLHC

    Get PDF
    In the context of the little Higgs models, we discuss single production of the new charged gauge bosons in association with top quark at the CERNCERN Large Hadron Collider(LHC)(LHC). We find that the new charged gauge bosons WHW_{H}^{-} and XX^{-}, which are predicted by the littlest Higgs model and the SU(3) simple model, respectively, can be abundantly produced at the LHCLHC. However, since the main backgrounds coming from the processes ppttˉ+Xpp\to t\bar{t}+X and pptW+Xpp\to tW^{-}+X are very large, the values of the ratios NWN_{W} and NXN_{X} are very small in most of the parameter space. It is only possible to detect the signal of the gauge boson WHW_{H}^{-} via the process ppgb+XtWH+Xpp\to gb+X\to tW_{H}^{-}+X at the LHCLHC in a small region of the parameter space.Comment: 14pages, 4 figures. To be published in Europhysics Letter

    Structural relaxation in a system of dumbbell molecules

    Full text link
    The interaction-site-density-fluctuation correlators, the dipole-relaxation functions, and the mean-squared displacements of a system of symmetric dumbbells of fused hard spheres are calculated for two representative elongations of the molecules within the mode-coupling theory for the evolution of glassy dynamics. For large elongations, universal relaxation laws for states near the glass transition are valid for parameters and time intervals similar to the ones found for the hard-sphere system. Rotation-translation coupling leads to an enlarged crossover interval for the mean-squared displacement of the constituent atoms between the end of the von Schweidler regime and the beginning of the diffusion process. For small elongations, the superposition principle for the reorientational α\alpha-process is violated for parameters and time intervals of interest for data analysis, and there is a strong breaking of the coupling of the α\alpha-relaxation scale for the diffusion process with that for representative density fluctuations and for dipole reorientations.Comment: 15 pages, 14 figures, Phys. Rev. E in pres

    PT-Symmetric Electronics

    Full text link
    We show both theoretically and experimentally that a pair of inductively coupled active LRC circuits (dimer), one with amplification and another with an equivalent amount of attenuation, display all the features which characterize a wide class of non-Hermitian systems which commute with the joint parity-time PT operator: typical normal modes, temporal evolution, and scattering processes. Utilizing a Liouvilian formulation, we can define an underlying PT-symmetric Hamiltonian, which provides important insight for understanding the behavior of the system. When the PT-dimer is coupled to transmission lines, the resulting scattering signal reveals novel features which reflect the PT-symmetry of the scattering target. Specifically we show that the device can show two different behaviors simultaneously, an amplifier or an absorber, depending on the direction and phase relation of the interrogating waves. Having an exact theory, and due to its relative experimental simplicity, PT-symmetric electronics offers new insights into the properties of PT-symmetric systems which are at the forefront of the research in mathematical physics and related fields.Comment: 17 pages, 7 figure
    corecore