10 research outputs found

    Low-cost Thermal Mapping for Concrete Heat Monitoring

    Full text link
    Robotics has been widely applied in smart construction for generating the digital twin or for autonomous inspection of construction sites. For example, for thermal inspection during concrete curing, continual monitoring of the concrete temperature is required to ensure concrete strength and to avoid cracks. However, buildings are typically too large to be monitored by installing fixed thermal cameras, and post-processing is required to compute the accumulated heat of each measurement point. Thus, by using an autonomous monitoring system with the capability of long-term thermal mapping at a large construction site, both cost-effectiveness and a precise safety margin of the curing period estimation can be acquired. Therefore, this study proposes a low-cost thermal mapping system consisting of a 2D range scanner attached to a consumer-level inertial measurement unit and a thermal camera for automated heat monitoring in construction using mobile robots.Comment: 4 pages, 5 figures, 2022 ICRA Worksho

    Proactive Camera Attribute Control Using Bayesian Optimization for Illumination-Resilient Visual Navigation

    No full text

    Accurate Mobile Urban Mapping via Digital Map-Based SLAM †

    No full text
    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird’s-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS

    Sparse Depth-Guided Image Enhancement Using Incremental GP with Informative Point Selection

    No full text
    We propose an online dehazing method with sparse depth priors using an incremental Gaussian Process (iGP). Conventional approaches focus on achieving single image dehazing by using multiple channels. In many robotics platforms, range measurements are directly available, except in a sparse form. This paper exploits direct and possibly sparse depth data in order to achieve efficient and effective dehazing that works for both color and grayscale images. The proposed algorithm is not limited to the channel information and works equally well for both color and gray images. However, efficient depth map estimations (from sparse depth priors) are additionally required. This paper focuses on a highly sparse depth prior for online dehazing. For efficient dehazing, we adopted iGP for incremental depth map estimation and dehazing. Incremental selection of the depth prior was conducted in an information-theoretic way by evaluating mutual information (MI) and other information-based metrics. As per updates, only the most informative depth prior was added, and haze-free images were reconstructed from the atmospheric scattering model with incrementally estimated depth. The proposed method was validated using different scenarios, color images under synthetic fog, real color, and grayscale haze indoors, outdoors, and underwater scenes
    corecore