39,424 research outputs found
Anomalous Gluon Self-Interactions and Production
Strong-interaction physics that lies beyond the standard model may
conveniently be described by an effective Lagrangian. The only genuinely
gluonic CP-conserving term at dimension six is the three-gluon-field-strength
operator . This operator, which alters the 3-gluon and 4-gluon vertices
form their standard model forms, turns out to be difficult to detect in final
states containing light jets. Its effects on top quark pair production hold the
greatest promise of visibility.Comment: Latex file using [aps,aipbook,floats,epsf]{revtex}. 12 pages, 4
Postscript figures. Full PS copy at http://smyrd.bu.edu/htfigs/htfigs.html
Talk presented by EHS at the International Symposium on Vector Boson
Self-Interactions, UCLA, Feb. 1-3, 199
Super Jackstraws and Super Waterwheels
We construct various new BPS states of D-branes preserving 8 supersymmetries.
These include super Jackstraws (a bunch of scattered D- or (p,q)-strings
preserving supersymmetries), and super waterwheels (a number of D2-branes
intersecting at generic angles on parallel lines while preserving
supersymmetries). Super D-Jackstraws are scattered in various dimensions but
are dynamical with all their intersections following a common null direction.
Meanwhile, super (p,q)-Jackstraws form a planar static configuration. We show
that the SO(2) subgroup of SL(2,R), the group of classical S-duality
transformations in IIB theory, can be used to generate this latter
configuration of variously charged (p,q)-strings intersecting at various
angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries
as long as the `critical' Born-Infeld electric fields are along the common
direction.Comment: 23 pages, 10 figure
Vacuum Structure of Two-Dimensional Theory on the Orbifold
We consider the vacuum structure of two-dimensional theory on
both in the bosonic and the supersymmetric cases. When the size
of the orbifold is varied, a phase transition occurs at , where
is the mass of . For , there is a unique vacuum, while for
, there are two degenerate vacua. We also obtain the 1-loop quantum
corrections around these vacuum solutions, exactly in the case of and
perturbatively for greater than but close to . Including the
fermions we find that the "chiral" zero modes around the fixed points are
different for . As for the quantum corrections, the
fermionic contributions cancel the singular part of the bosonic contributions
at L=0. Then the total quantum correction has a minimum at the critical length
.Comment: Revtex, 15 pages, 3 eps figure
Lineal Trails of D2-D2bar Superstrings
We study the superstrings suspended between a D2- and an anti-D2-brane. We
quantize the string in the presence of some general configuration of gauge
fields over the (anti-)D-brane world volumes. The interstring can move only in
a specific direction that is normal to the difference of the electric fields of
each (anti-)D-branes. Especially when the electric fields are the same, the
interstring cannot move. We obtain the condition for the tachyons to disappear
from the spectrum.Comment: 15 pages with 4 figures, referenced added, Sec. 5 on the spectrum
made cleare
Monopoles and Knots in Skyrme Theory
We show that the Skyrme theory actually is a theory of monopoles which allows
a new type of solitons, the topological knots made of monopole-anti-monopole
pair,which is different from the well-known skyrmions. Furthermore, we derive a
generalized Skyrme action from the Yang-Mills action of QCD, which we propose
to be an effective action of QCD in the infra-red limit. We discuss the
physical implications of our results.Comment: 4 pages. Phys. Rev. Lett. in pres
Asymptotic Quasinormal Frequencies of Different Spin Fields in Spherically Symmetric Black Holes
We consider the asymptotic quasinormal frequencies of various spin fields in
Schwarzschild and Reissner-Nordstr\"om black holes. In the Schwarzschild case,
the real part of the asymptotic frequency is ln3 for the spin 0 and the spin 2
fields, while for the spin 1/2, the spin 1, and the spin 3/2 fields it is zero.
For the non-extreme charged black holes, the spin 3/2 Rarita-Schwinger field
has the same asymptotic frequency as that of the integral spin fields. However,
the asymptotic frequency of the Dirac field is different, and its real part is
zero. For the extremal case, which is relevant to the supersymmetric
consideration, all the spin fields have the same asymptotic frequency, the real
part of which is zero. For the imaginary parts of the asymptotic frequencies,
it is interesting to see that it has a universal spacing of for all the
spin fields in the single-horizon cases of the Schwarzschild and the extreme
Reissner-Nordstr\"om black holes. The implications of these results to the
universality of the asymptotic quasinormal frequencies are discussed.Comment: Revtex, 17 pages, 3 eps figures; one table, some remarks and
references added to section I
String Pair Creations in D-brane Systems
We investigate the criterion, on the Born-Infeld background fields, for the
open string pair creation to occur in D-(anti-)D-brane systems. Although
the pair creation occurs generically in both D-D and D-anti-D
systems for the cases which meet the criterion, it is more drastic in
D-anti-D-brane systems by some exponential factor depending on the
background fields. Various configurations exhibiting pair creations are
obtained via duality transformations. These include the spacelike scissors and
two D-strings (slanted at different angles) passing through each other. We
raise the scissors paradox and suggest a resolution based on the triple
junction in IIB setup.Comment: V2. 1+28 pages, 5 figures in JHEP3, minor changes, added reference
Dilaton as a Dark Matter Candidate and its Detection
Assuming that the dilaton is the dark matter of the universe, we propose an
experiment to detect the relic dilaton using the electromagnetic resonant
cavity, based on the dilaton-photon conversion in strong electromagnetic
background. We calculate the density of the relic dilaton, and estimate the
dilaton mass for which the dilaton becomes the dark matter of the universe.
With this we calculate the dilaton detection power in the resonant cavity, and
compare it with the axion detection power in similar resonant cavity
experiment.Comment: 23 pages, 2 figure
- …