9 research outputs found

    Numerical simulation of the flow into a circular pipe section

    Get PDF
    Computational Fluid dynamics (CFD) is the science that evolves rapidly in numerical solving of fluid motion equations to produce quantitative results and analyses of phenomena encountered in the fluid flow. When properly used, CFD is often ideal for parameterization studies or physical significance investigations of flow that would otherwise be impossible to replicate through theoretical or experimental tests. The aim of this paper is the study of the turbulent airflow and how the vortices formed in turbulent airflow are influenced by the evolution of the hydraulic characteristics of the fluid flow. Unsteady numerical simulation were performed using Reynolds Average Navier-Stokes (RANS) turbulence model adapted to conventional flow into a pipe with variable section which was implemented in the ANSYS FLUENT expert software

    Numerical simulation and comparison of two ventilation methods for a restaurant – displacement vs mixed flow ventilation

    No full text
    This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case

    Numerical simulation and comparison of two ventilation methods for a restaurant – displacement vs mixed flow ventilation

    No full text
    This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case

    Numerical analysis of the impact of natural ventilation on the Indoor Air Quality and Thermal Comfort in a classroom

    No full text
    Indoor air quality (IAQ) inside educational institutions is an important topic in the field of building and health research. School absenteeism and educational performance have been linked to poor air quality inside classrooms. A numerical simulation software has been used to test 5 different scenarios of natural ventilation during summer and winter. CO2 levels, air relative humidity, operative temperature and PMV were used as indoor air quality and thermal comfort indicators. Results have shown high CO2 and humidity levels when all windows are closed, and a variable improvement when different natural ventilations strategies are employed. A detailed procedure for the numerical simulation has been presented

    Local exhaust ventilation solutions for an industrial hall – Part 1 CFD analysis of the local exhaust systems

    No full text
    Industrial hygiene is an important aspect of any workplace environment, especially for the industrial domain. A previous study has shown that high ammonia levels were present in a wastewater treatment facility in Romania. The initial ventilation strategy was not efficient in maintaining pollutant concentrations within standard safety limits. An optimization of the initial ventilation system was realized, but CFD results and on-site measurements have shown that high local concentrations were still present. Two local exhaust methods have been proposed and analysed in order to improve the quality of the air inside the hall. A CFD approach has been used for the preliminary design process. The results indicate that both local exhaust solutions offer great improvements over the general dilution-based system, but only one can be applied

    Numerical simulation of the flow into a circular pipe section

    No full text
    Computational Fluid dynamics (CFD) is the science that evolves rapidly in numerical solving of fluid motion equations to produce quantitative results and analyses of phenomena encountered in the fluid flow. When properly used, CFD is often ideal for parameterization studies or physical significance investigations of flow that would otherwise be impossible to replicate through theoretical or experimental tests. The aim of this paper is the study of the turbulent airflow and how the vortices formed in turbulent airflow are influenced by the evolution of the hydraulic characteristics of the fluid flow. Unsteady numerical simulation were performed using Reynolds Average Navier-Stokes (RANS) turbulence model adapted to conventional flow into a pipe with variable section which was implemented in the ANSYS FLUENT expert software
    corecore