40 research outputs found

    Deep Etching of Single- and Polycrystalline Silicon with High Speed, High Aspect Ratio, High Uniformity, and 3D Complexity by Electric Bias-Attenuated Metal-Assisted Chemical Etching (EMaCE)

    No full text
    In this work, a novel wet silicon (Si) etching method, electric bias-attenuated metal-assisted chemical etching (EMaCE), is demonstrated to be readily available for three-dimensional (3D) electronic integration, microelectromechinal systems, and a broad range of 3D electronic components with low cost. On the basis of the traditional metal-assisted chemical etching process, an electric bias was applied to the Si substrate in EMaCE. The 3D geometry of the etching profile was effectively controlled by the bias in a real-time manner. The reported method successfully fabricated an array of over 10 000 vertical holes with diameters of 28 μm on 1 cm<sup>2</sup> silicon chips at a rate of up to 11 μm/min. The sidewall roughness was kept below 50 nm, and a high aspect ratio of over 10:1 was achieved. The 3D geometry could be attenuated by the variable applied bias in real time. Vertical deep etching was realized on (100)-, (111)-Si, and polycrystalline Si substrates. Complex features with lateral dimensions of 0.8–500 μm were also fabricated with submicron accuracy

    Nano Ag-Deposited BaTiO<sub>3</sub> Hybrid Particles as Fillers for Polymeric Dielectric Composites: Toward High Dielectric Constant and Suppressed Loss

    No full text
    Nano Ag-deposited BaTiO<sub>3</sub> (BT-Ag) hybrid particles usable as fillers for flexible polymeric composites to obtain high dielectric constant, low conductivity, and low dielectric loss were developed. BT-Ag hybrid particles were synthesized via a seed-mediated growing process by a redox reaction between silver nitrate and ethylene glycol. Nano Ag particles with a size less than 20 nm were discretely grown on the surface of the 100 nm BaTiO<sub>3</sub>. The similar lattice spacing of the (1 1 1) planes of BT and Ag led to the hetero-epitaxial growth of Ag on the BT surface. The thickness of the coherent interface was about 3 nm. The adhesion of Ag to BT efficiently prevented the continuous contact between Ag particles in the polyvinylidene fluoride (PVDF) matrix and suppressed the formation of the conducting path in the composite. As a result, with a filler loading of 43.4 vol %, the composite exhibited a dielectric constant (<i>D</i><sub>k</sub>) value of 94.3 and dielectric loss (tan δ) of 0.06 at 1 kHz. An even higher <i>D</i><sub>k</sub> value of 160 at 1 kHz (16 times larger than that of PVDF) was obtained when the content of BT-Ag was further increased, with low conductivity (σ < 10<sup>–5</sup> S m<sup>–1</sup>) and low dielectric loss (tan δ = 0.11), demonstrating promising applications in the electronic devices

    Highly Thermally Conductive Composite Papers Prepared Based on the Thought of Bioinspired Engineering

    No full text
    The rapid development of modern electronics and three-dimensional integration sets stringent requirements for efficient heat removal of thermal-management materials to ensure the long lifetime of the electronics. However, conventional polymer composites that have been used widely as thermal-management materials suffer from undesired thermal conductivity lower than 10 W m<sup>–1</sup> K<sup>–1</sup>. In this work, we report a novel thermally conductive composite paper based on the thought of bioinspired engineering. The advantage of the bioinspired papers over conventional composites lies in that they possess a very high in-plane thermal conductivity up to 21.7 W m<sup>–1</sup> K<sup>–1</sup> along with good mechanical properties and high electrical insulation. We attribute the high thermal conductivity to the improved interfacial interaction between assembled components through the introduction of silver nanoparticles and the oriented structure based on boron nitride nanosheets and silicon carbide nanowires. This thought based on bioinspired engineering provides a creative opportunity for design and fabrication of novel thermally conductive materials, and this kind of composite paper has potential applications in powerful integrated microelectronics

    Facile Preparation of Superelastic and Ultralow Dielectric Boron Nitride Nanosheet Aerogels via Freeze-Casting Process

    No full text
    As a structural analogue of graphene, boron nitride nanosheets (BNNSs) have attracted ever-growing research interest in the past few years, due to their remarkably mechanical, electrical, and thermal properties. The preparation of BNNS aerogels is considered to be one of the most effective approaches for their practical applications. However, it has remained a great challenge to fabricate BNNS aerogels with superelasticity by a facile method. Here, we report the preparation of BNNS aerogels via a facile method involving polymer-assisted cross-linking and freeze-casting strategies. The resulting aerogels exhibit a well-ordered and anisotropic microstructure, leading to anisotropic superelasticity, high compressive strength, and excellent energy absorption ability. The unique microstructure also endows the aerogels with ultralow dielectric constant (1.24) and loss (∼0.003). The successful fabrication of such fascinating materials paves the way for application of BNNSs in energy-absorbing services, catalyst carrier, and environmental remediation, etc

    Pressure-Induced Oriented Attachment Growth of Large-Size Crystals for Constructing 3D Ordered Superstructures

    No full text
    Oriented attachment (OA), a nonclassical crystal growth mechanism, provides a powerful bottom-up approach to obtain ordered superstructures, which also demonstrate exciting charge transmission characteristic. However, there is little work observably pronouncing the achievement of 3D OA growth of crystallites with large size (<i>e.g.</i>, submicrometer crystals). Here, we report that SnO<sub>2</sub> 3D ordered superstructures can be synthesized by means of a self-limited assembly assisted by OA in a designed high-pressure solvothermal system. The size of primary building blocks is 200–250 nm, which is significantly larger than that in previous results (normally <10 nm). High pressure plays the key role in the formation of 3D configuration and fusion of adjacent crystals. Furthermore, this high-pressure strategy can be readily expanded to additional materials. We anticipate that the welded structures will constitute an ideal system with relevance to applications in optical responses, lithium ion battery, solar cells, and chemical sensing

    Facile Preparation of Superelastic and Ultralow Dielectric Boron Nitride Nanosheet Aerogels via Freeze-Casting Process

    No full text
    As a structural analogue of graphene, boron nitride nanosheets (BNNSs) have attracted ever-growing research interest in the past few years, due to their remarkably mechanical, electrical, and thermal properties. The preparation of BNNS aerogels is considered to be one of the most effective approaches for their practical applications. However, it has remained a great challenge to fabricate BNNS aerogels with superelasticity by a facile method. Here, we report the preparation of BNNS aerogels via a facile method involving polymer-assisted cross-linking and freeze-casting strategies. The resulting aerogels exhibit a well-ordered and anisotropic microstructure, leading to anisotropic superelasticity, high compressive strength, and excellent energy absorption ability. The unique microstructure also endows the aerogels with ultralow dielectric constant (1.24) and loss (∼0.003). The successful fabrication of such fascinating materials paves the way for application of BNNSs in energy-absorbing services, catalyst carrier, and environmental remediation, etc

    Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites

    No full text
    Efficient heat removal via thermal management materials has become one of the most critical challenges in the development of modern microelectronic devices. However, previously reported polymer composites exhibit limited enhancement of thermal conductivity, even when highly loaded with thermally conductive fillers, because of the lack of efficient heat transfer pathways. Herein, we report vertically aligned and interconnected SiC nanowire (SiCNW) networks as efficient fillers for polymer composites, achieving significantly enhanced thermal conductivity. The SiCNW networks are produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to consolidate the nanowire junctions, exhibiting a hierarchical architecture in which honeycomb-like SiCNW layers are aligned. The composite obtained by infiltrating SiCNW networks with epoxy resin, at a relatively low SiCNW loading of 2.17 vol %, represents a high through-plane thermal conductivity (1.67 W m<sup>–1</sup> K<sup>–1</sup>) compared to the pure matrix, which is equivalent to a significant enhancement of 406.6% per 1 vol % loading. The orderly SiCNW network which can act as a macroscopic expressway for phonon transport is believed to be the main contributor for the excellent thermal performance. This strategy provides insights for the design of high-performance composites with potential to be used in advanced thermal management materials

    Room-Temperature Nanowelding of a Silver Nanowire Network Triggered by Hydrogen Chloride Vapor for Flexible Transparent Conductive Films

    No full text
    High contact resistance between silver nanowires (AgNWs) is a key issue in widespread application of AgNW flexible transparent conductive films as a promising candidate to replace the brittle and expensive indium tin oxide. A facile, room-temperature nanowelding method of an AgNW network triggered by hydrogen chloride (HCl) vapor is demonstrated to reduce the sheet resistance of the AgNW network. Under the visible light, O<sub>2</sub> and HCl vapor serving as an etching couple induced silver atoms to be transferred from the bottom AgNW at the junction to the top one, and then, these silver atoms epitaxially recrystallized at the contact position with the lattice of the top AgNW as the template, ultimately resulting in the coalescence of the junction between AgNWs. Polydimethylsiloxane (PDMS) was spin-coated onto the HCl-vapor-treated (HVT) AgNW network on the polyethylene terephthalate substrate to fabricate PDMS/HVT AgNW films. The fabricated film with low sheet resistance and high transmittance retained its conductivity after 4000 bending cycles. Furthermore, excellent heating performance, electromagnetic interference shielding effectiveness, and foldability were obtained in the PDMS/HVT AgNW film. Thus, the role of the simple nanowelding process is evident in enhancing the performance of AgNW transparent conductive films for emerging soft optoelectronic applications
    corecore