1,992 research outputs found

    Incoherent pion photoproduction on the deuteron in the first resonance region

    Get PDF
    Incoherent pion photoproduction on the deuteron is studied in the first resonance region. The unpolarized cross section, the beam asymmetry, and the vector and tensor target asymmetries are calculated in the framework of a diagrammatic approach. Pole diagrams and one-loop diagrams with NNNN scattering in the final state are taken into account. An elementary operator for pion photoproduction on the nucleon is taken in various on-shell forms and calculated using the SAID and MAID multipole analyses. Model dependence of the obtained results is discussed in some detail. A comparison with predictions of other works is given. Although a reasonable description of many available experimental data on the unpolarized total and differential cross sections and photon asymmetry has been achieved, in some cases a significant disagreement between the theory and experiment has been found. Invoking known information on the reactions γd→π0d\gamma d\to\pi^0 d and γd→np\gamma d\to np we predict the total photoabsorption cross section for deuterium. We find that our values strongly overestimate experimental data in the vicinity of the Δ\Delta peak.Comment: 22 pages, 23 figure

    Transcriptional Regulation of Glucose Metabolism: The Emerging Role of the HMGA1 Chromatin Factor

    Get PDF
    HMGA1 (high mobility group A1) is a nonhistone architectural chromosomal protein that functions mainly as a dynamic regulator of chromatin structure and gene transcription. As such, HMGA1 is involved in a variety of fundamental cellular processes, including gene expression, epigenetic regulation, cell differentiation and proliferation, as well as DNA repair. In the last years, many reports have demonstrated a role of HMGA1 in the transcriptional regulation of several genes implicated in glucose homeostasis. Initially, it was proved that HMGA1 is essential for normal expression of the insulin receptor (INSR), a critical link in insulin action and glucose homeostasis. Later, it was demonstrated that HMGA1 is also a downstream nuclear target of the INSR signaling pathway, representing a novel mediator of insulin action and function at this level. Moreover, other observations have indicated the role of HMGA1 as a positive modulator of the Forkhead box protein O1 (FoxO1), a master regulatory factor for gluconeogenesis and glycogenolysis, as well as a positive regulator of the expression of insulin and of a series of circulating proteins that are involved in glucose counterregulation, such as the insulin growth factor binding protein 1 (IGFBP1), and the retinol binding protein 4 (RBP4). Thus, several lines of evidence underscore the importance of HMGA1 in the regulation of glucose production and disposal. Consistently, lack of HMGA1 causes insulin resistance and diabetes in humans and mice, while variations in the HMGA1 gene are associated with the risk of type 2 diabetes and metabolic syndrome, two highly prevalent diseases that share insulin resistance as a common pathogenetic mechanism. This review intends to give an overview about our current knowledge on the role of HMGA1 in glucose metabolism. Although research in this field is ongoing, many aspects still remain elusive. Future directions to improve our insights into the pathophysiology of glucose homeostasis may include epigenetic studies and the use of "omics" strategies. We believe that a more comprehensive understanding of HMGA1 and its networks may reveal interesting molecular links between glucose metabolism and other biological processes, such as cell proliferation and differentiation

    Study of the a_0(980) meson via the radiative decay phi->eta pi^0 gamma with the KLOE detector

    Full text link
    We have studied the phi->a_0(980) gamma process with the KLOE detector at the Frascati phi-factory DAPhNE by detecting the phi->eta pi^0 gamma decays in the final states with eta->gamma gamma and eta->pi^+ pi^- pi^0. We have measured the branching ratios for both final states: Br(phi->eta pi^0 gamma)=(7.01 +/- 0.10 +/- 0.20)x10^-5 and (7.12 +/- 0.13 +/- 0.22)x10^-5 respectively. We have also extracted the a_0(980) mass and its couplings to eta pi^0, K^+ K^-, and to the phi meson from the fit of the eta pi^0 invariant mass distributions using different phenomenological models.Comment: 17 pages, 6 figures, submitted to Physics Letters B. Corrected typos in eq.

    Determination of CP and CPT violation parameters in the neutral kaon system using the Bell-Steinberger relation and data from the KLOE experiment

    Get PDF
    We present an improved determination of the CP and CPT violation parameters Re(epsilon) and Im(delta) based on the unitarity condition (Bell-Steinberger relation) and on recent results from the KLOE experiment. We find Re(epsilon) = (159.6 \pm 1.3)10^-5 and Im(delta) = (0.4 \pm 2.1)10^-5, consistent with no CPT violation.Comment: Submitted to JHE

    Measurement of the K_L \to \pi\mu\nu form factor parameters with the KLOE detector

    Full text link
    Using 328 pb^{-1}of data collected at DAFNE corresponding to ∼\sim 1.8 million KL→πμνK_L\to \pi\mu\nu decays, we have measured the Kμ3K_{\mu 3} form factor parameters. The structure of the K−πK-\pi vector-current provides information about the dynamics of the strong interaction; its knowledge is necessary for evaluation of the phase-space integral required for measuring the CKM matrix element VusV_{us} and for testing lepton universality in kaon decays. Using a new parametrization for the vector and scalar form factors, we find λ+\lambda_+=\pt(25.7\pm 0.6),-3, and λ0\lambda_0=\pt(14.0\pm 2.1),-3,. Our result for λ0\lambda_0, together with recent lattice calculations of fπf_\pi, fKf_K and f(0)f(0), satisfies the Callan-Trieman relatio
    • …
    corecore