3,869 research outputs found

    Testing Single-Parameter Classical Standpoint Cosmology

    Get PDF
    Experimental tests of homogeneous-universe classical standpoint cosmology are proposed after presentation of conceptual considerations that encourage this radical departure from the standard model. Among predictions of the new model are standpoint age equal to Hubble time, energy-density parameter Ω0=2−2=.586\Omega_0 = 2 - \sqrt{2} =.586, and relations between redshift, Hubble-scale distribution of matter and galaxy luminosity and angular diameter. These latter relations coincide with those of the standard model for zero deceleration. With eye to further tests, geodesics of the non-Riemannian standpoint metric are explicitly given. Although a detailed thermodynamic ``youthful-standpoint'' approximation remains to be developed (for particle mean free path small on standpoint scale), standpoint temperature depending only on standpoint age is a natural concept, paralleling energy density and redshift that perpetuates thermal spectrum for cosmic background radiation. Prospects for primordial nucleosynthesis are promising.Comment: 27 pages, latexed, math_macros.tex used, full postscript available from: http://theor1.lbl.gov/www/theorgroup/papers/37162.p

    Weak Classical-Gravity Source in Standpoint Cosmology

    Get PDF
    Guided by a linearized approximation to Einstein theory, an interim prescription for ``weak source of gravity'' - - in ``particle'' energy-momentum distributed along standpoint light cone - - is formulated for (classical) standpoint cosmology.Comment: 11 pages, uses math_macros.tex, late

    Transition from collisionless to collisional MRI

    Full text link
    Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2\pi/k_{\Par}. In the weak magnetic field regime where the Alfv\'en and MRI frequencies ω\omega are small compared to the sound wave frequency k_{\Par} c_0, the dynamics are still effectively collisionless even if ω≪ν\omega \ll \nu, so long as the collision frequency \nu \ll k_{\Par} c_{0}; for an accretion flow this requires \nu \lsim \Omega \sqrt{\beta}. The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI.Comment: 20 pages, 4 figures, submitted to ApJ with a clearer derivation of anisotropic pressure closure from drift kinetic equatio

    Exploring the S-Matrix of Massless Particles

    Full text link
    We use the recently proposed generalised on-shell representation for scattering amplitudes and a consistency test to explore the space of tree-level consistent couplings in four-dimensional Minkowski spacetime. The extension of the constructible notion implied by the generalised on-shell representation, i.e. the possibility to reconstruct at tree level all the scattering amplitudes from the three-particle ones, together with the imposition of the consistency conditions at four-particle level, allow to rediscover all the known theories and their algebra structure, if any. Interestingly, this analysis seems to leave room for high-spin couplings, provided that at least the requirement of locality is weakened. We do not claim to have found tree-level consistent high-spin theories, but rather that our methods show signatures of them and very likely, with a suitable modification, they can be a good framework to perform a systematic search.Comment: 44 pages, 1 figur

    TOPOLOGICAL ELECTROMAGNETISM FOR QUARKS AND LEPTONS

    Full text link
    As outgrowth of a topological bootstrap theory of strong interactions and precursor to a corresponding theory of weak interactions, we propose a representation of electromagnetic interactions for "elementary" hadrons and leptons through combinatorial topology. The representation supports the prediction of four lepton doublets

    U(1)-decoupling, KK and BCJ relations in N=4\mathcal{N}=4 SYM

    Full text link
    We proved the color reflection relation, U(1)-decoupling, Kleiss-Kuijf and Bern-Carrasco-Johansson relation for color-ordered N=4\mathcal{N}=4 Super Yang-Mills theory using N=4\mathcal{N}=4 SYM version BCFW recursion relation, which depends only on the general properties of super-amplitudes. This verified the conjectured matter fields BCJ relation. We also show that color reflection relation and U(1)-decoupling relation are special cases of KK relation, if we consider the KK relation as a general relation, then the former two relations come out naturally as the special cases.Comment: 17 page

    Dissipation in intercluster plasma

    Get PDF
    We discuss dissipative processes in strongly gyrotropic, nearly collisionless plasma in clusters of galaxies (ICM). First, we point out that Braginsky theory, which assumes that collisions are more frequent that the system's dynamical time scale, is inapplicable to fast, sub-viscous ICM motion. Most importantly, the electron contribution to collisional magneto-viscosity dominates over that of ions for short-scale Alfvenic motions. Thus, if a turbulent cascade develops in the ICM and propagates down to scales ≤1\leq 1 kpc, it is damped collisionally not on ions, but on electrons. Second, in high beta plasma of ICM, small variations of the magnetic field strength, of relative value ∼1/β\sim 1/\beta, lead to development of anisotropic pressure instabilities (firehose, mirror and cyclotron). Unstable wave modes may provide additional resonant scattering of particles, effectively keeping the plasma in a state of marginal stability. We show that in this case the dissipation rate of a laminar, subsonic, incompressible flows scales as inverse of plasma beta parameter. We discuss application to the problem of ICM heating.Comment: 4 pages, accepted by ApJ Let

    The Riemann Surface of a Static Dispersion Model and Regge Trajectories

    Full text link
    The S-matrix in the static limit of a dispersion relation is a matrix of a finite order N of meromorphic functions of energy ω\omega in the plane with cuts (−∞,−1],[+1,+∞)(-\infty,-1],[+1,+\infty). In the elastic case it reduces to N functions Si(ω)S_{i}(\omega) connected by the crossing symmetry matrix A. The scattering of a neutral pseodoscalar meson with an arbitrary angular momentum l at a source with spin 1/2 is considered (N=2). The Regge trajectories of this model are explicitly found.Comment: 5 pages, LaTe

    Application of dispersion relations to low-energy meson-nucleon scattering

    Get PDF
    Relativistic dispersion relations are used to derive equations for low-energy S-, P-, and D-wave meson-nucleon scattering under the assumption that the (3,3) resonance dominates the dispersion integrals. The P-wave equations so obtained differ only slightly from those of the static fixed-source theory. The conclusions of the static theory are re-examined in the light of their new derivation
    • …
    corecore