193 research outputs found

    In-situ electron microscopy investigation of ferroelectric domain switching kinetics

    Get PDF
    Due to their ultra-high piezoelectricity, pyroelectric properties, mechanical/electrical hysteresis properties and their possessing of non-volatile polarization states, ferroelectric materials have been used in various electronic devices, including various sensors, actuators, transducers, micromotors, and non-volatile memories. The mechanical, electrical, electromechanical, and thermoelectric properties are crucial factors for device applications of ferroelectric materials. These properties are particularly sensitive to the change of the embedded microscopic structures. Therefore, the mechanical and electrical characterisation of ferroelectric materials and the observation of their microstructural evolution under external stimuli are necessary for understanding their unique properties. However, this is not an easy task because of the difficulty of mechanical and electrical testing of nano/microscale materials. Various techniques have been used to investigate the mechanical and electrical behaviours of ferroelectric materials, among which the in-situ transmission electron microscopy is one of the most effective techniques. This thesis aims to combine state-of-the-art in-situ transmission electron microscopy techniques, the scanning transmission electron microscopy high-angle annular dark-field imaging technique, and phase-field modelling to investigate microstructural evolution in ferroelectric materials under different external stimuli. One of the ultimate goals of this research is to improve the performance of non-volatile ferroelectric memory devices

    Definition and Detection of Defects in NFT Smart Contracts

    Full text link
    Recently, the birth of non-fungible tokens (NFTs) has attracted great attention. NFTs are capable of representing users' ownership on the blockchain and have experienced tremendous market sales due to their popularity. Unfortunately, the high value of NFTs also makes them a target for attackers. The defects in NFT smart contracts could be exploited by attackers to harm the security and reliability of the NFT ecosystem. Despite the significance of this issue, there is a lack of systematic work that focuses on analyzing NFT smart contracts, which may raise worries about the security of users' NFTs. To address this gap, in this paper, we introduce 5 defects in NFT smart contracts. Each defect is defined and illustrated with a code example highlighting its features and consequences, paired with possible solutions to fix it. Furthermore, we propose a tool named NFTGuard to detect our defined defects based on a symbolic execution framework. Specifically, NFTGuard extracts the information of the state variables from the contract abstract syntax tree (AST), which is critical for identifying variable-loading and storing operations during symbolic execution. Furthermore, NFTGuard recovers source-code-level features from the bytecode to effectively locate defects and report them based on predefined detection patterns. We run NFTGuard on 16,527 real-world smart contracts and perform an evaluation based on the manually labeled results. We find that 1,331 contracts contain at least one of the 5 defects, and the overall precision achieved by our tool is 92.6%.Comment: Accepted by ISSTA 202

    DsMtGCN: A Direction-sensitive Multi-task framework for Knowledge Graph Completion

    Full text link
    To solve the inherent incompleteness of knowledge graphs (KGs), numbers of knowledge graph completion (KGC) models have been proposed to predict missing links from known triples. Among those, several works have achieved more advanced results via exploiting the structure information on KGs with Graph Convolutional Networks (GCN). However, we observe that entity embeddings aggregated from neighbors in different directions are just simply averaged to complete single-tasks by existing GCN based models, ignoring the specific requirements of forward and backward sub-tasks. In this paper, we propose a Direction-sensitive Multi-task GCN (DsMtGCN) to make full use of the direction information, the multi-head self-attention is applied to specifically combine embeddings in different directions based on various entities and sub-tasks, the geometric constraints are imposed to adjust the distribution of embeddings, and the traditional binary cross-entropy loss is modified to reflect the triple uncertainty. Moreover, the competitive experiments results on several benchmark datasets verify the effectiveness of our model

    VeryFL: A Verify Federated Learning Framework Embedded with Blockchain

    Full text link
    Blockchain-empowered federated learning (FL) has provoked extensive research recently. Various blockchain-based federated learning algorithm, architecture and mechanism have been designed to solve issues like single point failure and data falsification brought by centralized FL paradigm. Moreover, it is easier to allocate incentives to nodes with the help of the blockchain. Various centralized federated learning frameworks like FedML, have emerged in the community to help boost the research on FL. However, decentralized blockchain-based federated learning framework is still missing, which cause inconvenience for researcher to reproduce or verify the algorithm performance based on blockchain. Inspired by the above issues, we have designed and developed a blockchain-based federated learning framework by embedding Ethereum network. This report will present the overall structure of this framework, which proposes a code practice paradigm for the combination of FL with blockchain and, at the same time, compatible with normal FL training task. In addition to implement some blockchain federated learning algorithms on smart contract to help execute a FL training, we also propose a model ownership authentication architecture based on blockchain and model watermarking to protect the intellectual property rights of models. These mechanism on blockchain shows an underlying support of blockchain for federated learning to provide a verifiable training, aggregation and incentive distribution procedure and thus we named this framework VeryFL (A Verify Federated Learninig Framework Embedded with Blockchain). The source code is avaliable on https://github.com/GTMLLab/VeryFL

    The Devil is in the Data: Learning Fair Graph Neural Networks via Partial Knowledge Distillation

    Full text link
    Graph neural networks (GNNs) are being increasingly used in many high-stakes tasks, and as a result, there is growing attention on their fairness recently. GNNs have been shown to be unfair as they tend to make discriminatory decisions toward certain demographic groups, divided by sensitive attributes such as gender and race. While recent works have been devoted to improving their fairness performance, they often require accessible demographic information. This greatly limits their applicability in real-world scenarios due to legal restrictions. To address this problem, we present a demographic-agnostic method to learn fair GNNs via knowledge distillation, namely FairGKD. Our work is motivated by the empirical observation that training GNNs on partial data (i.e., only node attributes or topology data) can improve their fairness, albeit at the cost of utility. To make a balanced trade-off between fairness and utility performance, we employ a set of fairness experts (i.e., GNNs trained on different partial data) to construct the synthetic teacher, which distills fairer and informative knowledge to guide the learning of the GNN student. Experiments on several benchmark datasets demonstrate that FairGKD, which does not require access to demographic information, significantly improves the fairness of GNNs by a large margin while maintaining their utility.Comment: Accepted by WSDM 202

    New Approaches in Multi-View Clustering

    Get PDF
    Many real-world datasets can be naturally described by multiple views. Due to this, multi-view learning has drawn much attention from both academia and industry. Compared to single-view learning, multi-view learning has demonstrated plenty of advantages. Clustering has long been serving as a critical technique in data mining and machine learning. Recently, multi-view clustering has achieved great success in various applications. To provide a comprehensive review of the typical multi-view clustering methods and their corresponding recent developments, this chapter summarizes five kinds of popular clustering methods and their multi-view learning versions, which include k-means, spectral clustering, matrix factorization, tensor decomposition, and deep learning. These clustering methods are the most widely employed algorithms for single-view data, and lots of efforts have been devoted to extending them for multi-view clustering. Besides, many other multi-view clustering methods can be unified into the frameworks of these five methods. To promote further research and development of multi-view clustering, some popular and open datasets are summarized in two categories. Furthermore, several open issues that deserve more exploration are pointed out in the end
    • …
    corecore