120,596 research outputs found
Recommended from our members
Linking human-building interactions in shared offices with personality traits
Occupant behavior influences office building energy performance. The level of human-building interactions (HBIs) in shared offices strongly influences building energy use and occupant well-being. This study explored the link between occupant personality types and their behaviors of sharing energy and environment control systems and interactions with their colleagues. Inspired by the Five-Factor Model (FFM), we classified HBI behaviors into four dimensions: willingness to share control, knowledge of control, group decision behavior, and adaptive strategies. These four variables can be mapped to the four personality traits proposed by the FFM: agreeableness, openness, extraversion, and conscientiousness. Our cluster analysis identified six behavioral patterns: average (17.7%), reserved (15.3%), environmentally friendly (16.6%), role model (24.2%), self-centered (17.2%), and mechanist (9.0%). We further applied association rules, a widely utilized machine learning technique, to discover how demographics, building-related contextual factors, and perception-attitudinal factors influence HBI behaviors. Country, control feature accessibility, and group dynamics were found to be the three most influential factors that determine occupants’ HBI behaviors. The study provides insights about building design and operation, as well as policy to promote socially and environmentally desirable HBI behaviors in a shared office environment
Practical Certificateless Aggregate Signatures From Bilinear Maps
Aggregate signature is a digital signature with a striking property that anyone can aggregate n individual signatures on n different messages which are signed by n distinct signers, into a single compact signature to reduce computational and storage costs. In this work, two practical certificateless aggregate signature schemes are proposed from bilinear maps. The first scheme CAS-1 reduces the costs of communication and signer-side computation but trades off the storage, while CAS-2 minimizes the storage but sacrifices the communication costs. One can choose either of the schemes by consideration of the application requirement. Compare with ID-based schemes, our schemes do not entail public key certificates as well and achieve the trust level 3, which imply the frauds of the authority are detectable. Both of the schemes are proven secure in the random oracle model by assuming the intractability of the computational Diffie-Hellman problem over the groups with bilinear maps, where the forking lemma technique is avoided
The Relativistic Rotation
The classical rotation is not self-consistent in the framework of the special
theory of relativity. the Relativistic rotation is obtained, which takes the
relativistic effect into account. It is demonstrated that the angular frequency
of classical rotation is only valid in local approximation. The properties of
the relativistic rotation and the relativistic transverse Doppler shift are
discussed in this work
A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information
Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German
- …