32 research outputs found

    Effect of chitosan biopolymer and UV/TiO2 method for the de-coloration of acid blue 40 simulated textile wastewater

    Get PDF
    The purpose for this study is to de-color C.I. Acid Blue 40 simulated textile wastewater using chitosan and UV/TiO2 system. The methodology is to use chitosan biopolymer and UV/TiO2 to degrade textile wastewater and to measure the color removal by UV-visible spectrophotometer. The operational parameters are chitosan, TiO2, pH and reaction time. From the laboratory investigations, different efficiencies were observed according to different removal operating levels. Single chitosan of 2500 ppm dose was used to remove Acid Blue 40 textile wastewater and to obtain a better efficiency. TiO2 alone with UV light was also used with the dose of 2500 ppm to obtain a better efficiency. In acidity, both chitosan and TiO2 obtain better efficiencies under pH 4 operational condition. The best combination for UV/TiO2 system to de-color the 50 ppm Acid Blue 40 textile wastewater was TiO2 2500 ppm concentration with UV illumination at pH 4. The result shows that the de-colorization efficiency reached 98.8% elimination after 210 min of reaction time.Keywords: Chitosan biopolymer, UV/TiO2, Acid Blue 40, textile wastewater, spectrophotometerAfrican Journal of Biotechnology Vol. 9(34), pp. 5575-5580, 23 August, 201

    Recovery of a Digital Image Collection Through the SDSC/UMD/NARA Prototype Persistent Archive

    Get PDF
    The San Diego Supercomputer Center (SDSC), the University of Maryland, and the National Archives and Records Administration (NARA) are collaborating on building a pilot persistent archive using and extending data grid and digital library technologies. The current prototype consists of node servers at SDSC, University of Maryland, and NARA, connected through the Storage Request Broker (SRB) data grid middleware, and currently holds several terabytes of NARA selected collections. In particular, a historically important image collection that was on the verge of becoming inaccessible was fully restored and ingested into our pilot system. In this report, we describe the methodology behind our approach to fully restore this image collection and the process used to ingest it into the prototype persistent archive. (UMIACS-TR-2003-105

    Efficacy and toxicities of doxorubicin plus ifosfamide in the second-line treatment of uterine leiomyosarcoma

    Get PDF
    PurposeUterine leiomyosarcoma is a rare and aggressive tumor known for its drug resistance and metastatic potential. The standard first-line treatment typically involves anthracycline-based chemotherapy or a combination of gemcitabine and docetaxel; however, there is currently no established second-line treatment. Therefore, the aim of this study was to evaluate the efficacy and toxicity of doxorubicin plus ifosfamide as a potential second-line treatment for uterine leiomyosarcoma.Materials and methodsThis is a retrospective, single-center, single-arm study. We reviewed the tumor registry data from January 2010 to December 2022 and identified patients with uterine leiomyosarcoma who had previously received first-line salvage or adjuvant treatment involving gemcitabine and taxotere, and later experienced tumor recurrence. Patients who met these criteria were included in the study. The primary endpoint was the efficacy of doxorubicin and ifosfamide as a second-line treatment for uterine leiomyosarcoma, as measured by progression-free survival, 1-year overall survival, and response rate. The secondary endpoint was the adverse events associated with this regimen.ResultsFifty-two patients were diagnosed with uterine leiomyosarcoma during the study period, nine of whom were included in the data analysis. All patients had previously received gemcitabine-docetaxel as first-line adjuvant therapy, with a median progression-free survival period of 8.4 months. Doxorubicin-ifosfamide was administered as second-line treatment, with a median progression-free survival of 6.0 months (range: 2.7-79.9 months). The clinical benefit rate of the second-line treatment was 66.7%, with a median overall survival of 33.0 months, and a 1-year overall survival rate of 83.3%. Previous reports have shown that the median progression-free survival for second-line treatments using other regimens ranged from 1.4-5.6 months. The most common adverse event was myelosuppression, with five patients requiring granulocyte colony-stimulating factor and one patient requiring a blood transfusion. No patient discontinued treatment due to unmanageable adverse events.ConclusionUse of doxorubicin with ifosfamide may be a promising and reasonable second-line treatment with manageable adverse events for patients with uterine leiomyosarcoma

    Injectable liposomal docosahexaenoic acid alleviates atherosclerosis progression and enhances plaque stability

    Get PDF
    Atherosclerosis is a chronic inflammatory vascular disease that is characterized by the accumulation of lipids and immune cells in plaques built up inside artery walls. Docosahexaenoic acid (DHA, 22:6n-3), an omega-3 polyunsaturated fatty acid (PUFA), which exerts anti-inflammatory and antioxidant properties, has long been purported to be of therapeutic benefit to atherosclerosis patients. However, large clinical trials have yielded inconsistent data, likely due to variations in the formulation, dosage, and bioavailability of DHA following oral intake. To fully exploit its potential therapeutic effects, we have developed an injectable liposomal DHA formulation intended for intravenous administration as a plaque-targeted nanomedicine. The liposomal formulation protects DHA against chemical degradation and increases its local concentration within atherosclerotic lesions. Mechanistically, DHA liposomes are readily phagocytosed by activated macrophages, exert potent anti-inflammatory and antioxidant effects, and inhibit foam cell formation. Upon intravenous administration, DHA liposomes accumulate preferentially in atherosclerotic lesional macrophages and promote polarization of macrophages towards an anti-inflammatory M2 phenotype, resulting in attenuation of atherosclerosis progression in both ApoE−/− and Ldlr−/− experimental models. Plaque composition analysis demonstrates that liposomal DHA inhibits macrophage infiltration, reduces lipid deposition, and increases collagen content, thus improving the stability of atherosclerotic plaques against rupture. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) further reveals that DHA liposomes can partly restore the complex lipid profile of the plaques to that of early-stage plaques. In conclusion, DHA liposomes offer a promising approach for applying DHA to stabilize atherosclerotic plaques and attenuate atherosclerosis progression, thereby preventing atherosclerosis-related cardiovascular events

    Analysis of Video Quality Variation with Different Bit Rates of H.264 Compression

    No full text
    Abstract The study applied a charge-coupled device (CCD) camera to send video signals to 4 DaVinciℱ development boards (TMS320DM6446) of Texas Instruments (TI) to carry out H.264 Baseline Profile video coding. One of the development boards coded in the Variable Bit Rate (VBR) mode, and the other three development boards coded in the Constant Bit Rate (CBR) mode. In addition, the constant rates are 2 Mbps, 1.5 Mbps and 1 Mbps respectively. The H.264 video compression files produced by the boards were analyzed via video analysis software (CodecVisa) in the study. This software can analyze and present the compression data characteristics of the video files under each video frame, i.e., bits/MB, QP, and PSNR. In this research, the characteristics of data of each frame under four different compression conditions were compared. Their differences were calculated and averaged, and the standard deviation was evaluated. It was further connected with the values of quality characteristics and the peak signal to noise ratio (PSNR) of each frame to analyze the relation among the frame quality, the compression rate of CBR, as well as the quantitative granularity. The preliminary conclusion of the study is that the compression behaviors of CBRs in different coding sources are adjusted in a specific proportion in order to cope with the change in frame complexity. The frame will be severely damaged by a critical value during the process of network transmission while the source rate is less than the value of the characteristic

    Development and Psychometric Testing of a Taiwanese Team Interactions and Team Creativity Instrument (TITC-T) for Nursing Students

    No full text
    Background: How well team members work together can be affected by team interactions and creativity. There is no single instrument for measuring both variables in healthcare education settings in Taiwan. The purpose of this study is to develop an instrument to measure team interactions and team creativity for Taiwanese nursing students. Methods: A 34-item team interactions and team creativity self-report instrument was developed for nursing students in Taiwan (TITC-T). Items consisted of statements about how a participant perceived their team members’ constructive controversy, helping behaviors, communication, and creativity. Nursing students (n = 275) were recruited from two campuses of a science and technology university to examine the psychometric properties of the TITC-T. The reliability and psychometric properties were evaluated. Results: The Cronbach’s alpha was 0.98. The confirmatory factor analysis resulted in a one-dimensional factor structure that fit well with the model (Comparative Fit Index = 0.995, Tucker Lewis Index = 0.908, Root Mean Square Error of Approximation = 0.098). Conclusions: The TITC-T is a valid and reliable tool for evaluating team interactions and team creativity for students enrolled in nursing programs in Taiwan

    Immobilization of Chlamydomonas reinhardtii CLH1 on APTES-Coated Magnetic Iron Oxide Nanoparticles and Its Potential in the Production of Chlorophyll Derivatives

    No full text
    Recombinant Chlamydomonas reinhardtii chlorophyllase 1 (CrCLH1) that could catalyze chlorophyll hydrolysis to chlorophyllide and phytol in vitro was successfully expressed in Escherichia coli. The recombinant CrCLH1 was immobilized through covalent binding with a cubic (3-aminopropyl) triethoxysilane (APTES) coating on magnetic iron oxide nanoparticles (MIONPs), which led to markedly improved enzyme performance and decreased biocatalyst costs for potential industrial application. The immobilized enzyme exhibited a high immobilization yield (98.99 ± 0.91 mg/g of gel) and a chlorophyllase assay confirmed that the immobilized recombinant CrCLH1 retained enzymatic activity (722.3 ± 50.3 U/g of gel). Biochemical analysis of the immobilized enzyme, compared with the free enzyme, showed higher optimal pH and pH stability for chlorophyll-a hydrolysis in an acidic environment (pH 3–5). In addition, compared with the free enzyme, the immobilized enzyme showed higher activity in chlorophyll-a hydrolysis in a high temperature environment (50–60 °C). Moreover, the immobilized enzyme retained a residual activity of more than 64% of its initial enzyme activity after 14 cycles in a repeated-batch operation. Therefore, APTES-coated MIONP-immobilized recombinant CrCLH1 can be repeatedly used to lower costs and is potentially useful for the industrial production of chlorophyll derivatives

    Nortriptyline induces mitochondria and death receptor-mediated apoptosis in bladder cancer cells and inhibits bladder tumor growth in vivo

    No full text
    Nortriptyline (NTP), an antidepressant, has antitumor effects on some human cancer cells, but its effect on human bladder cancer cells is not known. In this study, we used a cell viability assay to demonstrate that NTP is cytotoxic to human TCCSUP and mouse MBT-2 bladder cancer cells in a concentration and time-dependent manner. We also performed cell cycle analysis, annexin V and mitochondrial membrane potential assays, and Western blot analysis to show that NTP inhibits cell growth in these cells by inducing both mitochondria-mediated and death receptor-mediated apoptosis. Specifically, NTP increases the expression of Fas, FasL, FADD, Bax, Bak, and cleaved forms of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase. In addition, NTP decreases the expression of Bcl-2, Bcl-xL, BH3 interacting domain death agonist, X-linked inhibitor of apoptosis protein, and survivin. Furthermore, NTP-induced apoptosis is associated with reactive oxygen species (ROS) production, which can be reduced by antioxidants, such as N-acetyl-L-cysteine. Finally, we showed that NTP suppresses tumor growth in mice inoculated with MBT-2 cells. Collectively, our results suggest that NTP induces both intrinsic and extrinsic apoptosis in human and mouse bladder cancer cells and that it may be a clinically useful chemotherapeutic agent for bladder cancer in humans

    Effects of Hericium erinaceus Mycelium Extracts on the Functional Activity of Purinoceptors and Neuropathic Pain in Mice with L5 Spinal Nerve Ligation

    No full text
    Neuropathic pain is a serious clinical problem that is difficult to treat. Purinoceptors (P2Rs) transduce pain perception from the peripheral to the central nervous system and play an important role in the transmission of neuropathic pain signals. We previously found that the crude extracts of Hericium erinaceus mycelium (HE-CE) inhibited P2R-mediated signaling in cells and reduced heat-induced pain in mice. The present study explored the effects of HE-CE on neuropathic pain. We used adenosine triphosphate (ATP) as a P2R agonist to generate Ca2+ signaling and neuronal damage in a cell line. We also established a neuropathic mouse model of L5 spinal nerve ligation (L5-SNL) to examine neuropathic pain and neuroinflammation. Neuropathic pain was recorded using the von Frey test. Neuroinflammation was evaluated based on immunohistofluorescence observation of glial fibrillary acidic protein (GFAP) levels in astrocytes, ionized calcium-binding adaptor molecule1 (iba1) levels in microglia, and IL-6 levels in plasma. The results show that HE-CE and erinacine-S, but not erinacine-A, totally counteracted Ca2+ signaling and cytotoxic effects upon P2R stimulation by ATP in human osteosarcoma HOS cells and human neuroblastoma SH-SY5Y cells, respectively. SNL induced a decrease in the withdrawal pressure of the ipsilateral hind paw, indicating neuropathic pain. It also raised the GFAP level in astrocytes, the iba1 level in microglia, and the IL-6 level in plasma, indicating neuroinflammation. HE-CE significantly counteracted the SNL-induced decrease in withdrawal pressure, illustrating that it could relieve neuropathic pain. It also reduced SNL-induced increases in astrocyte GFAP levels, microglial iba1 levels, and plasma IL-6 levels, suggesting that HE-CE reduces neuroinflammation. Erinacine-S relieved neuropathic pain better than HE-CE. The present study demonstrated that HE inhibits P2R and, thus, that it can relieve neuropathic pain and neuroinflammation
    corecore