76 research outputs found

    Text Growing on Leaf

    Full text link
    Irregular-shaped texts bring challenges to Scene Text Detection (STD). Although existing contour point sequence-based approaches achieve comparable performances, they fail to cover some highly curved ribbon-like text lines. It leads to limited text fitting ability and STD technique application. Considering the above problem, we combine text geometric characteristics and bionics to design a natural leaf vein-based text representation method (LVT). Concretely, it is found that leaf vein is a generally directed graph, which can easily cover various geometries. Inspired by it, we treat text contour as leaf margin and represent it through main, lateral, and thin veins. We further construct a detection framework based on LVT, namely LeafText. In the text reconstruction stage, LeafText simulates the leaf growth process to rebuild text contour. It grows main vein in Cartesian coordinates to locate text roughly at first. Then, lateral and thin veins are generated along the main vein growth direction in polar coordinates. They are responsible for generating coarse contour and refining it, respectively. Considering the deep dependency of lateral and thin veins on main vein, the Multi-Oriented Smoother (MOS) is proposed to enhance the robustness of main vein to ensure a reliable detection result. Additionally, we propose a global incentive loss to accelerate the predictions of lateral and thin veins. Ablation experiments demonstrate LVT is able to depict arbitrary-shaped texts precisely and verify the effectiveness of MOS and global incentive loss. Comparisons show that LeafText is superior to existing state-of-the-art (SOTA) methods on MSRA-TD500, CTW1500, Total-Text, and ICDAR2015 datasets

    Zoom Text Detector

    Full text link
    To pursue comprehensive performance, recent text detectors improve detection speed at the expense of accuracy. They adopt shrink-mask based text representation strategies, which leads to a high dependency of detection accuracy on shrink-masks. Unfortunately, three disadvantages cause unreliable shrink-masks. Specifically, these methods try to strengthen the discrimination of shrink-masks from the background by semantic information. However, the feature defocusing phenomenon that coarse layers are optimized by fine-grained objectives limits the extraction of semantic features. Meanwhile, since both shrink-masks and the margins belong to texts, the detail loss phenomenon that the margins are ignored hinders the distinguishment of shrink-masks from the margins, which causes ambiguous shrink-mask edges. Moreover, false-positive samples enjoy similar visual features with shrink-masks. They aggravate the decline of shrink-masks recognition. To avoid the above problems, we propose a Zoom Text Detector (ZTD) inspired by the zoom process of the camera. Specifically, Zoom Out Module (ZOM) is introduced to provide coarse-grained optimization objectives for coarse layers to avoid feature defocusing. Meanwhile, Zoom In Module (ZIM) is presented to enhance the margins recognition to prevent detail loss. Furthermore, Sequential-Visual Discriminator (SVD) is designed to suppress false-positive samples by sequential and visual features. Experiments verify the superior comprehensive performance of ZTD

    Propagate And Calibrate: Real-time Passive Non-line-of-sight Tracking

    Full text link
    Non-line-of-sight (NLOS) tracking has drawn increasing attention in recent years, due to its ability to detect object motion out of sight. Most previous works on NLOS tracking rely on active illumination, e.g., laser, and suffer from high cost and elaborate experimental conditions. Besides, these techniques are still far from practical application due to oversimplified settings. In contrast, we propose a purely passive method to track a person walking in an invisible room by only observing a relay wall, which is more in line with real application scenarios, e.g., security. To excavate imperceptible changes in videos of the relay wall, we introduce difference frames as an essential carrier of temporal-local motion messages. In addition, we propose PAC-Net, which consists of alternating propagation and calibration, making it capable of leveraging both dynamic and static messages on a frame-level granularity. To evaluate the proposed method, we build and publish the first dynamic passive NLOS tracking dataset, NLOS-Track, which fills the vacuum of realistic NLOS datasets. NLOS-Track contains thousands of NLOS video clips and corresponding trajectories. Both real-shot and synthetic data are included. Our codes and dataset are available at https://againstentropy.github.io/NLOS-Track/.Comment: CVPR 2023 camera-ready version. Codes and dataset are available at https://againstentropy.github.io/NLOS-Track

    Traffic Sign Interpretation in Real Road Scene

    Full text link
    Most existing traffic sign-related works are dedicated to detecting and recognizing part of traffic signs individually, which fails to analyze the global semantic logic among signs and may convey inaccurate traffic instruction. Following the above issues, we propose a traffic sign interpretation (TSI) task, which aims to interpret global semantic interrelated traffic signs (e.g.,~driving instruction-related texts, symbols, and guide panels) into a natural language for providing accurate instruction support to autonomous or assistant driving. Meanwhile, we design a multi-task learning architecture for TSI, which is responsible for detecting and recognizing various traffic signs and interpreting them into a natural language like a human. Furthermore, the absence of a public TSI available dataset prompts us to build a traffic sign interpretation dataset, namely TSI-CN. The dataset consists of real road scene images, which are captured from the highway and the urban way in China from a driver's perspective. It contains rich location labels of texts, symbols, and guide panels, and the corresponding natural language description labels. Experiments on TSI-CN demonstrate that the TSI task is achievable and the TSI architecture can interpret traffic signs from scenes successfully even if there is a complex semantic logic among signs. The TSI-CN dataset and the source code of the TSI architecture will be publicly available after the revision process

    One-Shot High-Fidelity Talking-Head Synthesis with Deformable Neural Radiance Field

    Full text link
    Talking head generation aims to generate faces that maintain the identity information of the source image and imitate the motion of the driving image. Most pioneering methods rely primarily on 2D representations and thus will inevitably suffer from face distortion when large head rotations are encountered. Recent works instead employ explicit 3D structural representations or implicit neural rendering to improve performance under large pose changes. Nevertheless, the fidelity of identity and expression is not so desirable, especially for novel-view synthesis. In this paper, we propose HiDe-NeRF, which achieves high-fidelity and free-view talking-head synthesis. Drawing on the recently proposed Deformable Neural Radiance Fields, HiDe-NeRF represents the 3D dynamic scene into a canonical appearance field and an implicit deformation field, where the former comprises the canonical source face and the latter models the driving pose and expression. In particular, we improve fidelity from two aspects: (i) to enhance identity expressiveness, we design a generalized appearance module that leverages multi-scale volume features to preserve face shape and details; (ii) to improve expression preciseness, we propose a lightweight deformation module that explicitly decouples the pose and expression to enable precise expression modeling. Extensive experiments demonstrate that our proposed approach can generate better results than previous works. Project page: https://www.waytron.net/hidenerf/Comment: Accepted by CVPR 202
    • …
    corecore