1,205 research outputs found

    Lattice dynamics of quasi-2D perovskites from first-principles

    Full text link
    We present the vibrational properties and phonon dispersion for quasi-2D hybrid organic-inorganic perovskites (BA)2_2CsPb2_2I7_7, (HA)2_2CsPb2_2I7_7, (BA)2_2(MA)Pb2_2I7_7, and (HA)2_2(MA)Pb2_2I7_7 calculated from first principles. Given the highly complex nature of these compounds, we first perform careful benchmarking and convergence testing to identify suitable parameters to describe their structural features and vibrational properties. We find that the inclusion of van der Waals corrections on top of generalized gradient approximation (GGA) exchange-correlation functionals provides the best agreement for the equilibrium structure relative to experimental data. We then compute vibrational properties under the harmonic approximation. We find that stringent energy cut-offs are required to obtain well-converged phonon properties, and once converged, the harmonic approximation can capture key physics for such a large, hybrid inorganic-organic system with vastly different atom types, masses, and interatomic interactions. We discuss the obtained phonon modes and dispersion behavior in the context of known properties for bulk 3D perovskites and ligand molecular crystals. While many vibrational properties are inherited from the parent systems, we also observe unique coupled vibrations that cannot be associated with vibrations of the pure constituent perovskite and ligand subphases. Dispersive low energy phonon branches primarily occur in the in-plane direction and within the perovskite subphase, and arise from bending and breathing modes of the equatorial Pb-I network within the perovskite octahedral plane

    A method for measuring the Neel relaxation time in a frozen ferrofluid

    Full text link
    We report a novel method of determining the average Neel relaxation time and its temperature dependence by calculating derivatives of the measured time dependence of temperature for a frozen ferrofluid exposed to an alternating magnetic field. The ferrofluid, composed of dextran-coated Fe3O4 nanoparticles (diameter 13.7 nm +/- 4.7 nm), was synthesized via wet chemical precipitation and characterized by x-ray diffraction and transmission electron microscopy. An alternating magnetic field of constant amplitude (H0 = 20 kA/m) driven at frequencies of 171 kHz, 232 kHz and 343 kHz was used to determine the temperature dependent magnetic energy absorption rate in the temperature range from 160 K to 210 K. We found that the specific absorption rate of the ferrofluid decreased monotonically with temperature over this range at the given frequencies. From these measured data, we determined the temperature dependence of the Neel relaxation time and estimate a room-temperature magnetocrystalline anisotropy constant of 40 kJ/m3, in agreement with previously published results
    • …
    corecore