47 research outputs found

    Modelling spatial variability of coffee (Coffea Arabica L.) crop condition with multispectral remote sensing data.

    Get PDF
    Doctor of Philosophy in Environmental Science. University of KwaZulu-Natal, Pietermaritzburg, 2017.Abstract available in PDF file

    Dataset of the suitability of major food crops in Africa under climate change

    Get PDF
    Understanding the extent and adapting to the impacts of climate change in the agriculture sector in Africa requires robust data on which technical and policy decisions can be based. However, there are no publicly available comprehensive data of which crops are suitable where under current and projected climate conditions for impact assessments and targeted adaptation planning. We developed a dataset on crop suitability of 23 major food crops (eight cereals, six legumes & pulses, six root & tuber crops, and three in banana-related family) for rainfed agriculture in Africa in terms of area and produced quantity. This dataset is based on the EcoCrop model parameterized with temperature, precipitation and soil data and is available for the historical period and until mid-century. The scenarios used for future projections are SSP1:RCP2.6, SSP3:RCP7.0 and SSP5:RCP8.5. The dataset provides a quantitative assessment of the impacts of climate change on crop production potential and can enable applications and linkages of crop impact studies to other socioeconomic aspects, thereby facilitating more comprehensive understanding of climate change impacts and assessment of options for building resilience

    Drivers of diversity and community structure of bees in an agroecological region of Zimbabwe

    Get PDF
    Worldwide bees provide an important ecosystem service of plant pollination. Climate change and land-use changes are among drivers threatening bee survival with mounting evidence of species decline and extinction. In developing countries, rural areas constitute a significant proportion of the country's land, but information is lacking on how different habitat types and weather patterns in these areas influence bee populations.This study investigated how weather variables and habitat-related factors influence the abundance, diversity, and distribution of bees across seasons in a farming rural area of Zimbabwe. Bees were systematically sampled in five habitat types (natural woodlots, pastures, homesteads, fields, and gardens) recording ground cover, grass height, flower abundance and types, tree abundance and recorded elevation, temperature, light intensity, wind speed, wind direction, and humidity. Zero-inflated models, censored regression models, and PCAs were used to understand the influence of explanatory variables on bee community composition, abundance, and diversity.Bee abundance was positively influenced by the number of plant species in flower (p < .0001). Bee abundance increased with increasing temperatures up to 28.5°C, but beyond this, temperature was negatively associated with bee abundance. Increasing wind speeds marginally decreased probability of finding bees.Bee diversity was highest in fields, homesteads, and natural woodlots compared with other habitats, and the contributions of the genus Apis were disproportionately high across all habitats. The genus Megachile was mostly associated with homesteads, while Nomia was associated with grasslands.Synthesis and applications. Our study suggests that some bee species could become more proliferous in certain habitats, thus compromising diversity and consequently ecosystem services. These results highlight the importance of setting aside bee-friendly habitats that can be refuge sites for species susceptible to land-use changes

    Remote Sensing Based Yield Estimation of Rice (Oryza Sativa L.) Using Gradient Boosted Regression in India

    Get PDF
    Accurate and spatially explicit yield information is required to ensure farmers’ income and food security at local and national levels. Current approaches based on crop cutting experiments are expensive and usually too late for timely income stabilization measures like crop insurances. We, therefore, utilized a Gradient Boosted Regression (GBR), a machine learning technique, to estimate rice yields at ~500 m spatial resolution for rice-producing areas in India with potential application for near real-time estimates. We used resampled intermediate resolution (~5 km) images of the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and observed yields at the district level in India for calibrating GBR models. These GBRs were then used to downscale district yields to 500 m resolution. Downscaled yields were re-aggregated for validation against out-of-sample district yields not used for model training and an additional independent data set of block-level (below district-level) yields. Our downscaled and re-aggregated yields agree well with reported district-level observations from 2003 to 2015 (r = 0.85 & MAE = 0.15 t/ha). The model performance improved further when estimating separate models for different rice cropping densities (up to r = 0.93). An additional out-of-sample validation for the years 2016 and 2017, proved successful with r = 0.84 and r = 0.77, respectively. Simulated yield accuracy was higher in water-limited, rainfed agricultural systems. We conclude that this downscaling approach of rice yield estimation using GBR is feasible across India and may complement current approaches for timely rice yield estimation required by insurance companies and government agencies

    A two-decade analysis of the spatial and temporal variations in burned areas across Zimbabwe

    Get PDF
    Understanding wildfire dynamics in space and over time is critical for wildfire control and management. In this study, fire data from European Space Agency (ESA) MODIS fire product (ESA/CCI/FireCCI/5_1) with ≥ 70% confidence level was used to characterise spatial and temporal variation in fire frequency in Zimbabwe between 2001 and 2020. Results showed that burned area increased by 16% from 3,689 km2 in 2001 to 6,130 km2 in 2011 and decreased in subsequent years reaching its lowest in 2020 (1,161km2). Over, the 20-year period, an average of 40,086.56 km2 of land was burned annually across the country. In addition, results of the regression analysis based on Generalised Linear Model illustrated that soil moisture, wind speed and temperature significantly explained variation in burned area. Moreover, the four-year lagged annual rainfall was positively related with burned area suggesting that some parts in the country (southern and western) are characterised by limited herbaceous production thereby increasing the time required for the accumulation of sufficient fuel load. The study identified major fire hotspots in Zimbabwe through the integration of remotely sensed fire data within a spatially analytical framework. This can provide useful insights into fire evolution which can be used to guide wildfire control and management in fire prone ecosystems. Moreover, resource allocation for fire management and mitigation can be optimised through targeting areas most affected by wildfires especially during the dry season where wildfire activity is at its peak

    The impact of land-use/land cover changes on water balance of the heterogeneous Buzi sub-catchment, Zimbabwe

    Get PDF
    The nature of interactions between ecological, physical and hydrological characteristics that determine the effects of land cover change on surface and sub-surface hydrology is not well understood in both natural and disturbed environments. The spatiotemporal dynamics of water fluxes and their relationship with land cover changes between 2009 and 2017 in the headwater Buzi sub-catchment in Zimbabwe is evaluated. To achieve this, land cover dynamics for the area under study were characterised from the 30 m Landsat data, using the eXtreme Gradient Boosting (XGBoost) algorithm
    corecore