246 research outputs found

    Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln(2)BaZnO(5) (Ln = Y, Gd)

    Get PDF
    This is the author's accepted version of the article. The final published article can be found here: http://dx.doi.org/10.1039/C0JM01652

    Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes

    Get PDF
    10.1039/c5ta09060aJournal of Materials Chemistry A41270-27

    Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphization

    Get PDF
    We have used a family of Zr-based metal-organic frameworks (MOFs) with different functionalized (bromo, nitro and amino) and extended linkers for drug delivery. We loaded the materials with the fluorescent model molecule calcein and the anticancer drug α-cyano-4-hydroxycinnamic acid (α-CHC), and consequently performed a mechanical amorphization process to attempt to control the delivery of guest molecules. Our analysis revealed that the loading values of both molecules were higher for the MOFs containing unfunctionalized linkers. Confocal microscopy showed that all the materials were able to penetrate into cells, and the therapeutic effect of α-CHC on HeLa cells was enhanced when loaded (20 wt%) into the MOF with the longest linker. On one hand, calcein release required up to 3 days from the crystalline form for all the materials. On the other hand, the amorphous counterparts containing the bromo and nitro functional groups released only a fraction of the total loaded amount, and in the case of the amino-MOF a slow and progressive release was successfully achieved for 15 days. In the case of the materials loaded with α-CHC, no difference was observed between the crystalline and amorphous form of the materials. These results highlight the necessity of a balance between the pore size of the materials and the size of the guest molecules to accomplish a successful and efficient sustained release using this mechanical ball-milling process. Additionally, the endocytic pathway used by cells to internalize these MOFs may lead to diverse final cellular locations and consequently, different therapeutic effects. Understanding these cellular mechanisms will drive the design of more effective MOFs for drug delivery applications.C.A.O. thanks Becas Chile and the Cambridge Trust for funding. D.F.J. thanks the Royal Society (UK) for funding through a University Research Fellowship. RSF thanks the Royal Society for receipt of a University Research Fellowship and the EPSRC (EP/L004461/1) and The University of Glasgow for funding. A.K.C is grateful to the European Research Council for an Advanced Investigator Award

    Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Get PDF
    A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/CZIF8-D) composite for use in a cathode for a lithium sulfur (Li-S) battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8), a typical zinc-containing metal organic framework (MOF), which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/CZIF8-D) composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/CZIF8-D sample, Li-S batteries with the GS-S/CZIF8-D composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.National Science Foundation of China (21373028)This is the final version of the article. It first appeared from American Institute of Physics Publishing via http://dx.doi.org/10.1063/1.490175

    How Strong Is the Hydrogen Bond in Hybrid Perovskites?

    No full text
    Hybrid organic–inorganic perovskites represent a special class of metal–organic framework where a molecular cation is encased in an anionic cage. The molecule–cage interaction influences phase stability, phase transformations, and the molecular dynamics. We examine the hydrogen bonding in four AmBX3 formate perovskites: [Am]Zn(HCOO)3, with Am+ = hydrazinium (NH2NH3+), guanidinium (C(NH2)3+), dimethylammonium (CH3)2NH2+, and azetidinium (CH2)3NH2+. We develop a scheme to quantify the strength of hydrogen bonding in these systems from first-principles, which separates the electrostatic interactions between the amine (Am+) and the BX3– cage. The hydrogen-bonding strengths of formate perovskites range from 0.36 to 1.40 eV/cation (8–32 kcalmol–1). Complementary solid-state nuclear magnetic resonance spectroscopy confirms that strong hydrogen bonding hinders cation mobility. Application of the procedure to hybrid lead halide perovskites (X = Cl, Br, I, Am+ = CH3NH3+, CH(NH2)2+) shows that these compounds have significantly weaker hydrogen-bonding energies of 0.09 to 0.27 eV/cation (2–6 kcalmol–1), correlating with lower order–disorder transition temperatures

    Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework.

    Get PDF
    Using Brillouin scattering, we measured the single-crystal elastic constants (C(ij)'s) of a prototypical metal-organic framework (MOF): zeolitic imidazolate framework (ZIF)-8 [Zn(2-methylimidazolate)(2)], which adopts a zeolitic sodalite topology and exhibits large porosity. Its C(ij)'s under ambient conditions are (in GPa) C(11)=9.522(7), C(12)=6.865(14), and C(44)=0.967(4). Tensorial analysis of the C(ij)'s reveals the complete picture of the anisotropic elasticity in cubic ZIF-8. We show that ZIF-8 has a remarkably low shear modulus G(min) < or approximately 1 GPa, which is the lowest yet reported for a single-crystalline extended solid. Using ab initio calculations, we demonstrate that ZIF-8's C(ij)'s can be reliably predicted, and its elastic deformation mechanism is linked to the pliant ZnN(4) tetrahedra. Our results shed new light on the role of elastic constants in establishing the structural stability of MOF materials and thus their suitability for practical applications

    Two‑Dimensional Copper Coordination Polymer Assembled with Fumarate and 5,5’‑Dimethyl‑2,2’‑bipyridine: Synthesis, Crystal Structure and Magnetic Properties

    Get PDF
    [[Cu(fum)(dmb)]·H2O]n, exhibiting weak antiferromagnetic interactions, displays a two-dimensional array comprised of rhombic dinuclear units, where the carboxylate moieties of fumarate bridging ligand displays monodentate and oxo-bridging coordination modes connecting two Cu centers.[[Cu(fum)(dmb)]·H2O]n (1) (fum = fumarate; dmb = 5,5’-dimethyl-2,2’-bipyridine) was obtained by a self-assembly solution reaction, at ambient conditions, and characterized by elemental analysis, IR spectroscopy and X-ray single crystal diffraction. Crystallographic studies show that 1 crystallizes in a triclinic system with a P-1 space group, with a = 8.2308(2) Å, b = 9.7563(2) Å, c = 10.3990(2) Å; α = 80.3444(4)°, β = 77.9517(4)°, γ = 82.0440(5)°; V = 800.45(3) Å3. The Cu(II) centers are five-coordinated with a distorted square pyramidal configuration. The formation of a two-dimensional (2D) array in 1 can be explained by the presence of two different coordination modes in the fumarate ligand: μ-η1:η0 and μ2-η2:η0, both in a bridging monodentate manner, the latter generating distinctive rhombic-dinuclear units. The thermal stability of 1 has also been analyzed. Magnetic measurements revealed that this polymer exhibits weak antiferromagnetic ordering.Universidad Autonoma del Estado de México Universidad Nacional Autónoma de Méxic
    corecore