246 research outputs found
Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln(2)BaZnO(5) (Ln = Y, Gd)
This is the author's accepted version of the article. The final published article can be found here: http://dx.doi.org/10.1039/C0JM01652
Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes
10.1039/c5ta09060aJournal of Materials Chemistry A41270-27
Recommended from our members
Synthesis, crystal structure, magnetic and electronic properties of the caesium-based transition metal halide Cs<inf>3</inf>Fe<inf>2</inf>Br<inf>9</inf>
The diversity of halide materials related to important solar energy systems
such as CsPbX3 (X = Cl, Br, I) is explored by introducing the transition metal
element Fe. In particular a new compound, Cs3Fe2Br9 (space group P6_3/mmc with
a = 7.5427(8) and c = 18.5849(13) {\AA}), has been synthesized and found to
contain 0D face-sharing Fe2Br9 octahedral dimers. Unlike its isomorph,
Cs3Bi2I9, it is black in color, has a low optical bandgap of 1.65 eV and
exhibits antiferromagnetic behavior below TN = 13 K. Density functional theory
calculations shed further light on these properties and also predict that the
material should have anisotropic transport characteristics
Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphization
We have used a family of Zr-based metal-organic frameworks (MOFs) with different functionalized (bromo, nitro and amino) and extended linkers for drug delivery. We loaded the materials with the fluorescent model molecule calcein and the anticancer drug α-cyano-4-hydroxycinnamic acid (α-CHC), and consequently performed a mechanical amorphization process to attempt to control the delivery of guest molecules. Our analysis revealed that the loading values of both molecules were higher for the MOFs containing unfunctionalized linkers. Confocal microscopy showed that all the materials were able to penetrate into cells, and the therapeutic effect of α-CHC on HeLa cells was enhanced when loaded (20 wt%) into the MOF with the longest linker. On one hand, calcein release required up to 3 days from the crystalline form for all the materials. On the other hand, the amorphous counterparts containing the bromo and nitro functional groups released only a fraction of the total loaded amount, and in the case of the amino-MOF a slow and progressive release was successfully achieved for 15 days. In the case of the materials loaded with α-CHC, no difference was observed between the crystalline and amorphous form of the materials. These results highlight the necessity of a balance between the pore size of the materials and the size of the guest molecules to accomplish a successful and efficient sustained release using this mechanical ball-milling process. Additionally, the endocytic pathway used by cells to internalize these MOFs may lead to diverse final cellular locations and consequently, different therapeutic effects. Understanding these cellular mechanisms will drive the design of more effective MOFs for drug delivery applications.C.A.O. thanks Becas Chile and the Cambridge Trust for funding. D.F.J. thanks the Royal Society (UK) for funding through a University Research Fellowship. RSF thanks the Royal Society for receipt of a University Research Fellowship and the EPSRC (EP/L004461/1) and The University of Glasgow for funding. A.K.C is grateful to the European Research Council for an Advanced Investigator Award
Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries
A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/CZIF8-D) composite for use in a cathode for a lithium sulfur (Li-S) battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8), a typical zinc-containing metal organic framework (MOF), which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/CZIF8-D) composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/CZIF8-D sample, Li-S batteries with the GS-S/CZIF8-D composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.National Science Foundation of China (21373028)This is the final version of the article. It first appeared from American Institute of Physics Publishing via http://dx.doi.org/10.1063/1.490175
Recommended from our members
[Am]Mn(HPOO): a new family of hybrid perovskites based on the hypophosphite ligand
A family of five hybrid ABX3 perovskites has been
synthesized using hypophosphite (H2POO)- as the X-site ion. These
compounds adopt the general formula [Am]Mn(H2POO)3,
where Am = guanidinium (HUA), formamidinium (FA), imidazolium
(IM), triazolium (TRZ), and dabconium (DAB). We explore the
diverse structural and phase transition behavior of these materials
through single-crystal diffraction measurements and demonstrate
contrasting magnetism in two of the phases, Am = GUA
and FA, that arises from structural distortions. The results show
that hypophosphite perovskites offer a promising platform for
generating new functional materials.Y.W., F.B., and A.K.C. gratefully thank the Ras Al Khaimah Center for Advanced Materials for financial support. S.S. gratefully thanks the Winston Churchill Foundation of the USA for financial support. R.M. thanks SERB, New Delhi for a JC Bose Fellowship. DFT calculations were performed at the Cambridge HPCS and the UK National Supercomputing Service, ARCHER. Access to the latter was obtained via the MCC consortium and funded by EPSRC under Grant No. EP/L000202/1. Magnetic measurements were carried out using the Advanced Materials Characterization Suite, funded by EPSRC Strategic Equipment Grant EP/M000524/1
How Strong Is the Hydrogen Bond in Hybrid Perovskites?
Hybrid organic–inorganic perovskites represent a special class of metal–organic framework where a molecular cation is encased in an anionic cage. The molecule–cage interaction influences phase stability, phase transformations, and the molecular dynamics. We examine the hydrogen bonding in four AmBX3 formate perovskites: [Am]Zn(HCOO)3, with Am+ = hydrazinium (NH2NH3+), guanidinium (C(NH2)3+), dimethylammonium (CH3)2NH2+, and azetidinium (CH2)3NH2+. We develop a scheme to quantify the strength of hydrogen bonding in these systems from first-principles, which separates the electrostatic interactions between the amine (Am+) and the BX3– cage. The hydrogen-bonding strengths of formate perovskites range from 0.36 to 1.40 eV/cation (8–32 kcalmol–1). Complementary solid-state nuclear magnetic resonance spectroscopy confirms that strong hydrogen bonding hinders cation mobility. Application of the procedure to hybrid lead halide perovskites (X = Cl, Br, I, Am+ = CH3NH3+, CH(NH2)2+) shows that these compounds have significantly weaker hydrogen-bonding energies of 0.09 to 0.27 eV/cation (2–6 kcalmol–1), correlating with lower order–disorder transition temperatures
Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework.
Using Brillouin scattering, we measured the single-crystal elastic constants (C(ij)'s) of a prototypical metal-organic framework (MOF): zeolitic imidazolate framework (ZIF)-8 [Zn(2-methylimidazolate)(2)], which adopts a zeolitic sodalite topology and exhibits large porosity. Its C(ij)'s under ambient conditions are (in GPa) C(11)=9.522(7), C(12)=6.865(14), and C(44)=0.967(4). Tensorial analysis of the C(ij)'s reveals the complete picture of the anisotropic elasticity in cubic ZIF-8. We show that ZIF-8 has a remarkably low shear modulus G(min) < or approximately 1 GPa, which is the lowest yet reported for a single-crystalline extended solid. Using ab initio calculations, we demonstrate that ZIF-8's C(ij)'s can be reliably predicted, and its elastic deformation mechanism is linked to the pliant ZnN(4) tetrahedra. Our results shed new light on the role of elastic constants in establishing the structural stability of MOF materials and thus their suitability for practical applications
Recommended from our members
Phase boundary engineering of metal-organic-framework-derived carbonaceous nickel selenides for sodium-ion batteries
Abstract: Sodium-ion batteries (SIBs) are promising power sources due to the low cost and abundance of battery-grade sodium resources, while practical SIBs suffer from intrinsically sluggish diffusion kinetics and severe volume changes of electrode materials. Metal-organic framework (MOFs) derived carbonaceous metal compound offer promising applications in electrode materials due to their tailorable composition, nanostructure, chemical and physical properties. Here, we fabricated hierarchical MOF-derived carbonaceous nickel selenides with bi-phase composition for enhanced sodium storage capability. As MOF formation time increases, the pyrolyzed and selenized products gradually transform from a single-phase Ni3Se4 into bi-phase NiSex then single-phase NiSe2, with concomitant morphological evolution from solid spheres into hierarchical urchin-like yolk-shell structures. As SIBs anodes, bi-phase NiSex@C/CNT-10h (10 h of hydrothermal synthesis time) exhibits a high specific capacity of 387.1 mAh/g at 0.1 A/g, long cycling stability of 306.3 mAh/g at a moderately high current density of 1 A/g after 2,000 cycles. Computational simulation further proves the lattice mismatch at the phase boundary facilitates more interstitial space for sodium storage. Our understanding of the phase boundary engineering of transformed MOFs and their morphological evolution is conducive to fabricate novel composites/hybrids for applications in batteries, catalysis, sensors, and environmental remediation
Two‑Dimensional Copper Coordination Polymer Assembled with Fumarate and 5,5’‑Dimethyl‑2,2’‑bipyridine: Synthesis, Crystal Structure and Magnetic Properties
[[Cu(fum)(dmb)]·H2O]n, exhibiting weak antiferromagnetic interactions, displays a two-dimensional array comprised of rhombic dinuclear units, where the carboxylate moieties of fumarate bridging ligand displays monodentate and oxo-bridging coordination modes connecting two Cu centers.[[Cu(fum)(dmb)]·H2O]n (1) (fum = fumarate; dmb = 5,5’-dimethyl-2,2’-bipyridine) was obtained by a self-assembly solution reaction, at ambient conditions, and characterized by elemental analysis, IR spectroscopy and X-ray single crystal diffraction. Crystallographic studies show that 1 crystallizes in a triclinic system with a P-1 space group, with a = 8.2308(2) Å, b = 9.7563(2) Å, c = 10.3990(2) Å; α = 80.3444(4)°, β = 77.9517(4)°, γ = 82.0440(5)°; V = 800.45(3) Å3. The Cu(II) centers are five-coordinated with a distorted square pyramidal configuration. The formation of a two-dimensional (2D) array in 1 can be explained by the presence of two different coordination modes in the fumarate ligand: μ-η1:η0 and μ2-η2:η0, both in a bridging monodentate manner, the latter generating distinctive rhombic-dinuclear units. The thermal stability of 1 has also been analyzed. Magnetic measurements revealed that this polymer exhibits weak antiferromagnetic ordering.Universidad Autonoma del Estado de México Universidad Nacional Autónoma de Méxic
- …