4 research outputs found

    Aminoazole-Based Diversity-Oriented Synthesis of Heterocycles

    Get PDF
    The comprehensive review contains the analysis of literature data concerning reactions of heterocyclization of aminoazoles and demonstrates the application of these types of transformations in diversity-oriented synthesis. The review is oriented to wide range of chemists working in the field of organic synthesis and both experimental and theoretical studies of nitrogen-containing heterocycles

    Effective microwave-assisted approach to 1,2,3-triazolobenzodiazepinones via tandem Ugi reaction/catalyst-free intramolecular azide–alkyne cycloaddition

    Get PDF
    A novel catalyst-free synthetic approach to 1,2,3-triazolobenzodiazepinones has been developed and optimized. The Ugi reaction of 2-azidobenzaldehyde, various amines, isocyanides, and acids followed by microwave-assisted intramolecular azide–alkyne cycloaddition (IAAC) gave a series of target heterocyclic compounds in moderate to excellent yields. Surprisingly, the normally required ruthenium-based catalysts were found to not affect the IAAC, only making isolation of the target compounds harder while the microwave-assisted catalyst-free conditions were effective for both terminal and non-terminal alkyne

    In Vitro Cytotoxicity of Methano[1,2,4]Triazolo-[1,5-C][1,3,5]Benzoxadiazocine Derivatives and Their Effects on Nitrite and Prostaglandin E2 (PGE2) Levels

    No full text
    Biological activity of the Biginelli type heterocycles is extremely broad and provides a suitable platform for the discovery of potent small drug-like molecules. Such activity of 3,4-dihydropyrimidin-2(1H)-one (DHPM) derivatives is widely known, whereas their oxygen-bridged analogs, benzoxadiazocines, are presented quite rarely in the literature. In this study, a series of new methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxadiazocine derivatives (3a-3j) were evaluated in vitro for their activities and molecular docking features. According to the molecular docking study, COX-2 and PGE(2)S appeared as likely targets responsible for the reduced PGE(2) levels caused by the title compounds. The cytotoxicity of compounds 3a-3g, 3j was evaluated on RAW 264.7 murine macrophage cell line by MTT assay after treatment for 24 h with various doses (25, 50, 100 mu M) of these compounds. Then, compounds admitting cell viability higher than 70% were tested for their anti-inflammatory activity at non-toxic doses by evaluating the nitrite level of cell supernatants with the Griess reagent. Compounds 3c and 3f demonstrated significant inhibition of nitrite production (by 29 and 25%, respectively) at 100 mu M (p < 0.05). These compounds significantly inhibited PGE(2) production, thus suggesting analgesic activity
    corecore